Separated nets in Euclidean space and Jacobians of biLipschitz maps

Dmitri Burago, Bruce Kleiner

Research output: Contribution to journalArticlepeer-review

Abstract

We show that there are separated nets in the Euclidean plane which are not biLipschitz equivalent to the integer lattice. The argument is based on the construction of a continuous function which is not the Jacobian of a biLipschitz map.

Original languageEnglish (US)
Pages (from-to)273-282
Number of pages10
JournalGeometric and Functional Analysis
Volume8
Issue number2
DOIs
StatePublished - 1998

ASJC Scopus subject areas

  • Analysis
  • Geometry and Topology

Fingerprint

Dive into the research topics of 'Separated nets in Euclidean space and Jacobians of biLipschitz maps'. Together they form a unique fingerprint.

Cite this