SeqPATE: Differentially Private Text Generation via Knowledge Distillation

Zhiliang Tian, Yingxiu Zhao, Ziyue Huang, Yu Xiang Wang, Nevin L. Zhang, He He

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Protecting the privacy of user data is crucial for text generation models, which can leak sensitive information during generation. Differentially private (DP) learning methods provide guarantees against identifying the existence of a training sample from model outputs. PATE is a recent DP learning algorithm that achieves high utility with strong privacy protection on training samples. However, text generation models output tokens sequentially in a large output space; the classic PATE algorithm is not customized for this setting. Furthermore, PATE works well to protect sample-level privacy, but is not designed to protect phrases in samples. In this paper, we propose SeqPATE, an extension of PATE to text generation that protects the privacy of individual training samples and sensitive phrases in training data. To adapt PATE to text generation, we generate pseudo-contexts and reduce the sequence generation problem to a next-word prediction problem. To handle the large output space, we propose a candidate filtering strategy to dynamically reduce the output space, and refine the teacher aggregation of PATE to avoid low agreement due to voting for a large number of candidates. To further reduce privacy losses, we use knowledge distillation to reduce the number of teacher queries. The experiments verify the effectiveness of SeqPATE in protecting both training samples and sensitive phrases.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
EditorsS. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh
PublisherNeural information processing systems foundation
ISBN (Electronic)9781713871088
StatePublished - 2022
Event36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans, United States
Duration: Nov 28 2022Dec 9 2022

Publication series

NameAdvances in Neural Information Processing Systems
Volume35
ISSN (Print)1049-5258

Conference

Conference36th Conference on Neural Information Processing Systems, NeurIPS 2022
Country/TerritoryUnited States
CityNew Orleans
Period11/28/2212/9/22

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'SeqPATE: Differentially Private Text Generation via Knowledge Distillation'. Together they form a unique fingerprint.

Cite this