Abstract
Many natural language processing applications use language models to generate text. These models are typically trained to predict the next word in a sequence, given the previous words and some context such as an image. However, at test time the model is expected to generate the entire sequence from scratch. This discrepancy makes generation brittle, as errors may accumulate along the way. We address this issue by proposing a novel sequence level training algorithm that directly optimizes the metric used at test time, such as BLEU or ROUGE. On three different tasks, our approach outperforms several strong baselines for greedy generation. The method is also competitive when these baselines employ beam search, while being several times faster.
Original language | English (US) |
---|---|
State | Published - 2016 |
Event | 4th International Conference on Learning Representations, ICLR 2016 - San Juan, Puerto Rico Duration: May 2 2016 → May 4 2016 |
Conference
Conference | 4th International Conference on Learning Representations, ICLR 2016 |
---|---|
Country/Territory | Puerto Rico |
City | San Juan |
Period | 5/2/16 → 5/4/16 |
ASJC Scopus subject areas
- Education
- Computer Science Applications
- Linguistics and Language
- Language and Linguistics