Sequence level training with recurrent neural networks

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, Wojciech Zaremba

Research output: Contribution to conferencePaperpeer-review

Abstract

Many natural language processing applications use language models to generate text. These models are typically trained to predict the next word in a sequence, given the previous words and some context such as an image. However, at test time the model is expected to generate the entire sequence from scratch. This discrepancy makes generation brittle, as errors may accumulate along the way. We address this issue by proposing a novel sequence level training algorithm that directly optimizes the metric used at test time, such as BLEU or ROUGE. On three different tasks, our approach outperforms several strong baselines for greedy generation. The method is also competitive when these baselines employ beam search, while being several times faster.

Original languageEnglish (US)
StatePublished - 2016
Event4th International Conference on Learning Representations, ICLR 2016 - San Juan, Puerto Rico
Duration: May 2 2016May 4 2016

Conference

Conference4th International Conference on Learning Representations, ICLR 2016
Country/TerritoryPuerto Rico
CitySan Juan
Period5/2/165/4/16

ASJC Scopus subject areas

  • Education
  • Computer Science Applications
  • Linguistics and Language
  • Language and Linguistics

Fingerprint

Dive into the research topics of 'Sequence level training with recurrent neural networks'. Together they form a unique fingerprint.

Cite this