TY - JOUR
T1 - Sequential self-assembly of DNA functionalized droplets
AU - Zhang, Yin
AU - McMullen, Angus
AU - Pontani, Lea Laetitia
AU - He, Xiaojin
AU - Sha, Ruojie
AU - Seeman, Nadrian C.
AU - Brujic, Jasna
AU - Chaikin, Paul M.
N1 - Publisher Copyright:
© 2017 The Author(s).
PY - 2017/12/1
Y1 - 2017/12/1
N2 - Complex structures and devices, both natural and manmade, are often constructed sequentially. From crystallization to embryogenesis, a nucleus or seed is formed and built upon. Sequential assembly allows for initiation, signaling, and logical programming, which are necessary for making enclosed, hierarchical structures. Although biology relies on such schemes, they have not been available in materials science. Here, we demonstrate programmed sequential self-assembly of DNA functionalized emulsions. The droplets are initially inert because the grafted DNA strands are pre-hybridized in pairs. Active strands on initiator droplets then displace one of the paired strands and thus release its complement, which in turn activates the next droplet in the sequence, akin to living polymerization. Our strategy provides time and logic control during the self-assembly process, and offers a new perspective on the synthesis of materials.
AB - Complex structures and devices, both natural and manmade, are often constructed sequentially. From crystallization to embryogenesis, a nucleus or seed is formed and built upon. Sequential assembly allows for initiation, signaling, and logical programming, which are necessary for making enclosed, hierarchical structures. Although biology relies on such schemes, they have not been available in materials science. Here, we demonstrate programmed sequential self-assembly of DNA functionalized emulsions. The droplets are initially inert because the grafted DNA strands are pre-hybridized in pairs. Active strands on initiator droplets then displace one of the paired strands and thus release its complement, which in turn activates the next droplet in the sequence, akin to living polymerization. Our strategy provides time and logic control during the self-assembly process, and offers a new perspective on the synthesis of materials.
UR - http://www.scopus.com/inward/record.url?scp=85020897859&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85020897859&partnerID=8YFLogxK
U2 - 10.1038/s41467-017-00070-0
DO - 10.1038/s41467-017-00070-0
M3 - Article
C2 - 28623249
AN - SCOPUS:85020897859
SN - 2041-1723
VL - 8
JO - Nature communications
JF - Nature communications
IS - 1
M1 - 21
ER -