TY - JOUR
T1 - Serotonin mimics tail shock in producing transient inhibition in the siphon withdrawal reflex of Aplysia
AU - Fitzgerald, K.
AU - Carew, T. J.
PY - 1991
Y1 - 1991
N2 - Tail shock-induced modulation of the siphon withdrawal reflex of Aplysia has recently been shown to have a transient inhibitory component, as well as a facilitatory component. This transient behavioral inhibition is also seen in a reduced preparation in which a cellular reflection of the inhibitory process, tail shock-induced inhibition of complex EPSPs in siphon motor neurons, is observed. The biogenic amine serotonin (5-HT) is known to play a role in the facilitatory aspects of sensitization in Aplysia. The aim of this article was to examine whether 5-HT might also contribute to the inhibitory effects of tail shock in the siphon withdrawal reflex. To examine this question, we carried out two kinds of experiments. First, in the isolated abdominal ganglion, we recorded intracellularly from siphon motor neurons and examined the effects of 5-HT on (1) complex (polysynaptic) EPSPs, produced by siphon nerve stimulation, and, simultaneously, (2) monosynaptic EPSPs from siphon sensory neurons. We found that, paralleling the effects of tail shock in the reduced preparation, 5-HT produced transient inhibition of the complex EPSP; the monosynaptic EPSP was facilitated by 5-HT. Second, we examined the behavioral effects of 5-HT on siphon withdrawal in a reduced preparation. We found that 5-HT again paralleled tail shock by producing transient inhibition of the siphon withdrawal reflex. Our results suggest that, in addition to its well-established facilitatory role in reflex modulation in Aplysia, 5-HT might play an important inhibitory role, as well.
AB - Tail shock-induced modulation of the siphon withdrawal reflex of Aplysia has recently been shown to have a transient inhibitory component, as well as a facilitatory component. This transient behavioral inhibition is also seen in a reduced preparation in which a cellular reflection of the inhibitory process, tail shock-induced inhibition of complex EPSPs in siphon motor neurons, is observed. The biogenic amine serotonin (5-HT) is known to play a role in the facilitatory aspects of sensitization in Aplysia. The aim of this article was to examine whether 5-HT might also contribute to the inhibitory effects of tail shock in the siphon withdrawal reflex. To examine this question, we carried out two kinds of experiments. First, in the isolated abdominal ganglion, we recorded intracellularly from siphon motor neurons and examined the effects of 5-HT on (1) complex (polysynaptic) EPSPs, produced by siphon nerve stimulation, and, simultaneously, (2) monosynaptic EPSPs from siphon sensory neurons. We found that, paralleling the effects of tail shock in the reduced preparation, 5-HT produced transient inhibition of the complex EPSP; the monosynaptic EPSP was facilitated by 5-HT. Second, we examined the behavioral effects of 5-HT on siphon withdrawal in a reduced preparation. We found that 5-HT again paralleled tail shock by producing transient inhibition of the siphon withdrawal reflex. Our results suggest that, in addition to its well-established facilitatory role in reflex modulation in Aplysia, 5-HT might play an important inhibitory role, as well.
UR - http://www.scopus.com/inward/record.url?scp=0026072530&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0026072530&partnerID=8YFLogxK
U2 - 10.1523/jneurosci.11-08-02510.1991
DO - 10.1523/jneurosci.11-08-02510.1991
M3 - Article
C2 - 1869928
AN - SCOPUS:0026072530
SN - 0270-6474
VL - 11
SP - 2510
EP - 2518
JO - Journal of Neuroscience
JF - Journal of Neuroscience
IS - 8
ER -