Shaping colloids for self-assembly

Stefano Sacanna, Mark Korpics, Kelvin Rodriguez, Laura Colón-Meléndez, Seung Hyun Kim, David J. Pine, Gi Ra Yi

Research output: Contribution to journalArticlepeer-review

Abstract

The creation of a new material often starts from the design of its constituent building blocks at a smaller scale. From macromolecules to colloidal architectures, to granular systems, the interactions between basic units of matter can dictate the macroscopic behaviour of the resulting engineered material and even regulate its genesis. Information can be imparted to the building units by altering their physical and chemical properties. In particular, the shape of building blocks has a fundamental role at the colloidal scale, as it can govern the self-organization of particles into hierarchical structures and ultimately into the desired material. Herein we report a simple and general approach to generate an entire zoo of new anisotropic colloids. Our method is based on a controlled deformation of multiphase colloidal particles that can be selectively liquified, polymerized, dissolved and functionalized in bulk. We further demonstrate control over the particle functionalization and coating by realizing patchy and Janus colloids.

Original languageEnglish (US)
Article number1688
JournalNature communications
Volume4
DOIs
StatePublished - 2013

ASJC Scopus subject areas

  • Chemistry(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Shaping colloids for self-assembly'. Together they form a unique fingerprint.

Cite this