Abstract
Orthogonal wavelet transforms have recently become a popular representation for multiscale signal and image analysis. One of the major drawbacks of these representations is their lack of translation invariance: the content of wavelet subbands is unstable under translations of the input signal. Wavelet transforms are also unstable with respect to dilations of the input signal, and in two dimensions, rotations of the input signal. We formalize these problems by defining a type of translation invariance that we call “shiftability”. In the spatial domain, shiftability corresponds to a lack of aliasing; thus, the conditions under which the property holds are specified by the sampling theorem. Shiftability may also be considered in the context of other domains, particularly orientation and scale. “Jointly shiftable” transforms that are simultaneously shiftable in more than one domain are explored. Two examples of jointly shiftable transforms are designed and implemented: a one-dimensional transform that is jointly shiftable in position and scale, and a two-dimensional transform that is jointly shiftable in position and orientation. The usefulness of these image representations for scale-space analysis, stereo disparity measurement, and image enhancement is demonstrated.
Original language | English (US) |
---|---|
Pages (from-to) | 587-607 |
Number of pages | 21 |
Journal | IEEE Transactions on Information Theory |
Volume | 38 |
Issue number | 2 |
DOIs | |
State | Published - Mar 1992 |
Keywords
- Wavelet
- aliasing
- image processing
- image representation
- interpolation
- multiscale
- orientation
- pyramid
- sampling
- steerable filters
ASJC Scopus subject areas
- Information Systems
- Computer Science Applications
- Library and Information Sciences