TY - GEN
T1 - Short-Term Traffic Forecasting Using High-Resolution Traffic Data
AU - Li, Wenqing
AU - Yang, Chuhan
AU - Jabari, Saif Eddin
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/9/20
Y1 - 2020/9/20
N2 - This paper develops a data-driven toolkit for traffic forecasting using high-resolution (a.k. a. event-based) traffic data. This is the raw data obtained from fixed sensors in urban roads. Time series of such raw data exhibit heavy fluctuations from one time step to the next (typically on the order of 0.1-1 second). Short-term forecasts (10-30 seconds into the future) of traffic conditions are critical for traffic operations applications (e.g., adaptive signal control). But traffic forecasting tools in the literature deal predominantly with 3-5 minute aggregated data, where the typical signal cycle is on the order of 2 minutes. This renders such forecasts useless at the operations level. To this end, we model the traffic forecasting problem as a matrix completion problem, where the forecasting inputs are mapped to a higher dimensional space using kernels. The formulation allows us to capture both nonlinear dependencies between forecasting inputs and outputs but also allows us to capture dependencies among the inputs. These dependencies correspond to correlations between different locations in the network. We further employ adaptive boosting to enhance the training accuracy and capture historical patterns in the data. The performance of the proposed methods is verified using high-resolution data obtained from a real-world traffic network in Abu Dhabi, UAE. Our experimental results show that the proposed method outperforms other state-of-the-art algorithms.
AB - This paper develops a data-driven toolkit for traffic forecasting using high-resolution (a.k. a. event-based) traffic data. This is the raw data obtained from fixed sensors in urban roads. Time series of such raw data exhibit heavy fluctuations from one time step to the next (typically on the order of 0.1-1 second). Short-term forecasts (10-30 seconds into the future) of traffic conditions are critical for traffic operations applications (e.g., adaptive signal control). But traffic forecasting tools in the literature deal predominantly with 3-5 minute aggregated data, where the typical signal cycle is on the order of 2 minutes. This renders such forecasts useless at the operations level. To this end, we model the traffic forecasting problem as a matrix completion problem, where the forecasting inputs are mapped to a higher dimensional space using kernels. The formulation allows us to capture both nonlinear dependencies between forecasting inputs and outputs but also allows us to capture dependencies among the inputs. These dependencies correspond to correlations between different locations in the network. We further employ adaptive boosting to enhance the training accuracy and capture historical patterns in the data. The performance of the proposed methods is verified using high-resolution data obtained from a real-world traffic network in Abu Dhabi, UAE. Our experimental results show that the proposed method outperforms other state-of-the-art algorithms.
KW - ensemble learning
KW - high-resolution data
KW - kernelized matrix completion
KW - traffic prediction
KW - unbalanced size
UR - http://www.scopus.com/inward/record.url?scp=85099660565&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85099660565&partnerID=8YFLogxK
U2 - 10.1109/ITSC45102.2020.9294706
DO - 10.1109/ITSC45102.2020.9294706
M3 - Conference contribution
AN - SCOPUS:85099660565
T3 - 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020
BT - 2020 IEEE 23rd International Conference on Intelligent Transportation Systems, ITSC 2020
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 23rd IEEE International Conference on Intelligent Transportation Systems, ITSC 2020
Y2 - 20 September 2020 through 23 September 2020
ER -