TY - GEN
T1 - Simulating Motion-Incorporating Spatial Consistency into NYUSIM Channel Model
AU - Ju, Shihao
AU - Rappaport, Theodore S.
N1 - Publisher Copyright:
© 2018 IEEE.
PY - 2018/7/2
Y1 - 2018/7/2
N2 - This paper describes an implementation of spatial consistency in the NYUSIM channel simulation platform. NYUSIM is a millimeter wave (mmWave) channel simulator that realizes measurement-based channel models based on a wide range of multipath channel parameters, including realistic multipath time delays and multipath components that arrive at different 3-D angles in space, and generates life-like samples of channel impulse responses (CIRs) that statistically match those measured in the real world. To properly simulate channel impairments and variations for adaptive antenna algorithms or channel state feedback, channel models should implement spatial consistency which ensures correlated channel responses over short time and distance epochs. The ability to incorporate spatial consistency into channel simulators will be essential to explore the ability to train and deploy massive multiple-input and multiple-output (MIMO) and multi-user beamforming in next-generation mobile communication systems. This paper implements spatial consistency in NYUSIM for when a user is moving in a square area with the side length 15 m. The spatial consistency extension will enable NYUSIM to generate realistic evolutions of temporal and spatial characteristics of the wideband CIRs for mobile users in motion, or for multiple users who are in close proximity to one another.
AB - This paper describes an implementation of spatial consistency in the NYUSIM channel simulation platform. NYUSIM is a millimeter wave (mmWave) channel simulator that realizes measurement-based channel models based on a wide range of multipath channel parameters, including realistic multipath time delays and multipath components that arrive at different 3-D angles in space, and generates life-like samples of channel impulse responses (CIRs) that statistically match those measured in the real world. To properly simulate channel impairments and variations for adaptive antenna algorithms or channel state feedback, channel models should implement spatial consistency which ensures correlated channel responses over short time and distance epochs. The ability to incorporate spatial consistency into channel simulators will be essential to explore the ability to train and deploy massive multiple-input and multiple-output (MIMO) and multi-user beamforming in next-generation mobile communication systems. This paper implements spatial consistency in NYUSIM for when a user is moving in a square area with the side length 15 m. The spatial consistency extension will enable NYUSIM to generate realistic evolutions of temporal and spatial characteristics of the wideband CIRs for mobile users in motion, or for multiple users who are in close proximity to one another.
UR - http://www.scopus.com/inward/record.url?scp=85064938592&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85064938592&partnerID=8YFLogxK
U2 - 10.1109/VTCFall.2018.8690738
DO - 10.1109/VTCFall.2018.8690738
M3 - Conference contribution
AN - SCOPUS:85064938592
T3 - IEEE Vehicular Technology Conference
BT - 2018 IEEE 88th Vehicular Technology Conference, VTC-Fall 2018 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 88th IEEE Vehicular Technology Conference, VTC-Fall 2018
Y2 - 27 August 2018 through 30 August 2018
ER -