Single image super-resolution using Gaussian process regression

He He, Wan Chi Siu

Research output: Chapter in Book/Report/Conference proceedingConference contribution


In this paper we address the problem of producing a high-resolution image from a single low-resolution image without any external training set. We propose a framework for both magnification and deblurring using only the original low-resolution image and its blurred version. In our method, each pixel is predicted by its neighbors through the Gaussian process regression. We show that when using a proper covariance function, the Gaussian process regression can perform soft clustering of pixels based on their local structures. We further demonstrate that our algorithm can extract adequate information contained in a single low-resolution image to generate a high-resolution image with sharp edges, which is comparable to or even superior in quality to the performance of other edge-directed and example-based super-resolution algorithms. Experimental results also show that our approach maintains high-quality performance at large magnifications.

Original languageEnglish (US)
Title of host publication2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011
PublisherIEEE Computer Society
Number of pages8
ISBN (Print)9781457703942
StatePublished - 2011

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition


Dive into the research topics of 'Single image super-resolution using Gaussian process regression'. Together they form a unique fingerprint.

Cite this