Single-Shot Lossy Compression for Joint Inference and Reconstruction

Oguzhan Kubilay Ulger, Elza Erkip

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

In the classical source coding problem, the compressed source is reconstructed at the decoder with respect to some distortion metric. Motivated by settings in which we are interested in more than simply reconstructing the compressed source, we investigate a single-shot compression problem where the decoder is tasked with reconstructing the original data as well as making inferences from it. Quality of inference and reconstruction is determined by a distortion criteria for each task. Given allowable distortion levels, we are interested in characterizing the probability of excess distortion. Modeling the joint inference and reconstruction problem as direct-indirect source coding one, we obtain lower and upper bounds for excess distortion probability. We specialize the converse bound and present a new easily computable achievability bound for the case where the distortion metric for reconstruction is logarithmic loss.

Original languageEnglish (US)
Title of host publication2023 59th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350328141
DOIs
StatePublished - 2023
Event59th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2023 - Monticello, United States
Duration: Sep 26 2023Sep 29 2023

Publication series

Name2023 59th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2023

Conference

Conference59th Annual Allerton Conference on Communication, Control, and Computing, Allerton 2023
Country/TerritoryUnited States
CityMonticello
Period9/26/239/29/23

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computational Theory and Mathematics
  • Computer Networks and Communications
  • Computer Science Applications
  • Computational Mathematics
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Single-Shot Lossy Compression for Joint Inference and Reconstruction'. Together they form a unique fingerprint.

Cite this