TY - JOUR
T1 - Single-Step Assembly of Multimodal Imaging Nanocarriers
T2 - MRI and Long-Wavelength Fluorescence Imaging
AU - Pinkerton, Nathalie M.
AU - Gindy, Marian E.
AU - Calero-Ddelc, Victoria L.
AU - Wolfson, Theodore
AU - Pagels, Robert F.
AU - Adler, Derek
AU - Gao, Dayuan
AU - Li, Shike
AU - Wang, Ruobing
AU - Zevon, Margot
AU - Yao, Nan
AU - Pacheco, Carlos
AU - Therien, Michael J.
AU - Rinaldi, Carlos
AU - Sinko, Patrick J.
AU - Prud'homme, Robert K.
N1 - Publisher Copyright:
© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
PY - 2015/6/1
Y1 - 2015/6/1
N2 - Magnetic resonance imaging (MRI)- and near-infrared (NIR)-active, multimodal composite nanocarriers (CNCs) are prepared using a simple one-step process, flash nanoprecipitation (FNP). The FNP process allows for the independent control of the hydrodynamic diameter, co-core excipient and NIR dye loading, and iron oxide-based nanocrystal (IONC) content of the CNCs. In the controlled precipitation process, 10 nm IONCs are encapsulated into poly(ethylene glycol) (PEG) stabilized CNCs to make biocompatible T2 contrast agents. By adjusting the formulation, CNC size is tuned between 80 and 360 nm. Holding the CNC size constant at an intensity weighted average diameter of 99 ± 3 nm (PDI width 28 nm), the particle relaxivity varies linearly with encapsulated IONC content ranging from 66 to 533 × 10-3m-1 s-1 for CNCs formulated with 4-16 wt% IONC. To demonstrate the use of CNCs as in vivo MRI contrast agents, CNCs are surface functionalized with liver-targeting hydroxyl groups. The CNCs enable the detection of 0.8 mm3 non-small cell lung cancer metastases in mice livers via MRI. Incorporating the hydrophobic, NIR dye tris-(porphyrinato)zinc(II) into CNCs enables complementary visualization with long-wavelength fluorescence at 800 nm. In vivo imaging demonstrates the ability of CNCs to act both as MRI and fluorescent imaging agents.
AB - Magnetic resonance imaging (MRI)- and near-infrared (NIR)-active, multimodal composite nanocarriers (CNCs) are prepared using a simple one-step process, flash nanoprecipitation (FNP). The FNP process allows for the independent control of the hydrodynamic diameter, co-core excipient and NIR dye loading, and iron oxide-based nanocrystal (IONC) content of the CNCs. In the controlled precipitation process, 10 nm IONCs are encapsulated into poly(ethylene glycol) (PEG) stabilized CNCs to make biocompatible T2 contrast agents. By adjusting the formulation, CNC size is tuned between 80 and 360 nm. Holding the CNC size constant at an intensity weighted average diameter of 99 ± 3 nm (PDI width 28 nm), the particle relaxivity varies linearly with encapsulated IONC content ranging from 66 to 533 × 10-3m-1 s-1 for CNCs formulated with 4-16 wt% IONC. To demonstrate the use of CNCs as in vivo MRI contrast agents, CNCs are surface functionalized with liver-targeting hydroxyl groups. The CNCs enable the detection of 0.8 mm3 non-small cell lung cancer metastases in mice livers via MRI. Incorporating the hydrophobic, NIR dye tris-(porphyrinato)zinc(II) into CNCs enables complementary visualization with long-wavelength fluorescence at 800 nm. In vivo imaging demonstrates the ability of CNCs to act both as MRI and fluorescent imaging agents.
KW - Composite nanocarrier
KW - Flash nanoprecipitation
KW - MRI contrast agents
KW - Metastasis detection
KW - Multimodal imaging
UR - http://www.scopus.com/inward/record.url?scp=84932194453&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84932194453&partnerID=8YFLogxK
U2 - 10.1002/adhm.201400766
DO - 10.1002/adhm.201400766
M3 - Article
C2 - 25925128
AN - SCOPUS:84932194453
SN - 2192-2640
VL - 4
SP - 1376
EP - 1385
JO - Advanced Healthcare Materials
JF - Advanced Healthcare Materials
IS - 9
ER -