Singular front formation in a model for quasigeostrophic flow

Peter Constantin, Andrew J. Majda, Esteban G. Tabak

Research output: Contribution to journalArticlepeer-review

Abstract

A two-dimensional model for quasigeostrophic flow which exhibits an analogy with the three-dimensional incompressible Euler equations is considered. Numerical experiments show that this model develops sharp fronts without the need to explicitly incorporate any ageostrophic effect. Furthermore, these fronts appear to become singular in finite time. The numerical evidence for singular behavior survives the tests of rigorous mathematical criteria.

Original languageEnglish (US)
Pages (from-to)9-11
Number of pages3
JournalPhysics of Fluids
Volume6
Issue number1
DOIs
StatePublished - 1994

ASJC Scopus subject areas

  • Computational Mechanics
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Singular front formation in a model for quasigeostrophic flow'. Together they form a unique fingerprint.

Cite this