SINGULARITY FORMATION FOR BURGERS’ EQUATION WITH TRANSVERSE VISCOSITY

Research output: Contribution to journalArticlepeer-review

Abstract

We consider Burgers’ equation with transverse viscosity (Equation presented). We construct and describe precisely a family of solutions which become singular in finite time by having their gradient becoming unbounded. To leading order, the solution is given by a backward self-similar solution of Burgers’ equation along the x variable, whose scaling parameters evolve according to parabolic equations along the y variable, one of them being the quadratic semi-linear heat equation. We develop a new framework adapted to this mixed hyperbolic/parabolic blow-up problem, revisit the construction of flat blow-up profiles for the semi-linear heat equation, and the self-similarity in singularities of the inviscid Burgers’ equation.

Original languageEnglish (US)
Pages (from-to)1047-1133
Number of pages87
JournalBulletin de la Societe Mathematique de France
Volume55
DOIs
StatePublished - 2022

ASJC Scopus subject areas

  • General Mathematics

Fingerprint

Dive into the research topics of 'SINGULARITY FORMATION FOR BURGERS’ EQUATION WITH TRANSVERSE VISCOSITY'. Together they form a unique fingerprint.

Cite this