Abstract
The assessment of macrophage response to nanoparticles is a central component in the evaluation of new nanoparticle designs for future in vivo application. This work investigates which feature, nanoparticle size or charge, is more predictive of non-specific uptake of nanoparticles by macrophages. This was investigated by synthesizing a library of polymer-coated iron oxide micelles, spanning a range of 30-100 nm in diameter and -23 mV to +9 mV, and measuring internalization into macrophages in vitro. Nanoparticle size and charge both contributed towards non-specific uptake, but within the ranges investigated, size appears to be a more dominant predictor of uptake. Based on these results, a protease-responsive nanoparticle was synthesized, displaying a matrix metalloproteinase-9 (MMP-9)-cleavable polymeric corona. These nanoparticles are able to respond to MMP-9 activity through the shedding of 10-20 nm of hydrodynamic diameter. This MMP-9-triggered decrease in nanoparticle size also led to up to a six-fold decrease in nanoparticle internalization by macrophages and is observable by T2-weighted magnetic resonance imaging. These findings guide the design of imaging or therapeutic nanoparticles for in vivo targeting of macrophage activity in pathologic states.
Original language | English (US) |
---|---|
Pages (from-to) | 799-813 |
Number of pages | 15 |
Journal | International Journal of Nanomedicine |
Volume | 7 |
DOIs | |
State | Published - 2012 |
Keywords
- Iron oxides
- Macrophage targeting
- Opsonization
- Poly(ethylene glycol) (PEG)
- Poly(propylene sulfide) (PPS)
ASJC Scopus subject areas
- Biophysics
- Bioengineering
- Biomaterials
- Pharmaceutical Science
- Drug Discovery
- Organic Chemistry