TY - GEN
T1 - Soft subdivision motion planning for complex planar robots
AU - Zhou, Bo
AU - Chiang, Yi Jen
AU - Yap, Chee
N1 - Publisher Copyright:
© Bo Zhou, Yi-Jen Chiang, and Chee Yap.
PY - 2018/8/1
Y1 - 2018/8/1
N2 - The design and implementation of theoretically-sound robot motion planning algorithms is challenging. Within the framework of resolution-exact algorithms, it is possible to exploit soft predicates for collision detection. The design of soft predicates is a balancing act between easily implementable predicates and their accuracy/effectivity. In this paper, we focus on the class of planar polygonal rigid robots with arbitrarily complex geometry. We exploit the remarkable decomposability property of soft collision-detection predicates of such robots. We introduce a general technique to produce such a decomposition. If the robot is an m-gon, the complexity of this approach scales linearly in m. This contrasts with the O(m3) complexity known for exact planners. It follows that we can now routinely produce soft predicates for any rigid polygonal robot. This results in resolution-exact planners for such robots within the general Soft Subdivision Search (SSS) framework. This is a significant advancement in the theory of sound and complete planners for planar robots. We implemented such decomposed predicates in our open-source Core Library. The experiments show that our algorithms are effective, perform in real time on non-trivial environments, and can outperform many sampling-based methods.
AB - The design and implementation of theoretically-sound robot motion planning algorithms is challenging. Within the framework of resolution-exact algorithms, it is possible to exploit soft predicates for collision detection. The design of soft predicates is a balancing act between easily implementable predicates and their accuracy/effectivity. In this paper, we focus on the class of planar polygonal rigid robots with arbitrarily complex geometry. We exploit the remarkable decomposability property of soft collision-detection predicates of such robots. We introduce a general technique to produce such a decomposition. If the robot is an m-gon, the complexity of this approach scales linearly in m. This contrasts with the O(m3) complexity known for exact planners. It follows that we can now routinely produce soft predicates for any rigid polygonal robot. This results in resolution-exact planners for such robots within the general Soft Subdivision Search (SSS) framework. This is a significant advancement in the theory of sound and complete planners for planar robots. We implemented such decomposed predicates in our open-source Core Library. The experiments show that our algorithms are effective, perform in real time on non-trivial environments, and can outperform many sampling-based methods.
KW - Algorithmic motion planning
KW - Computational geometry
KW - Planar robots with complex geometry
KW - Resolution-exact algorithms
KW - Soft predicates
UR - http://www.scopus.com/inward/record.url?scp=85052513617&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85052513617&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.ESA.2018.73
DO - 10.4230/LIPIcs.ESA.2018.73
M3 - Conference contribution
AN - SCOPUS:85052513617
SN - 9783959770811
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 26th European Symposium on Algorithms, ESA 2018
A2 - Bast, Hannah
A2 - Herman, Grzegorz
A2 - Azar, Yossi
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 26th European Symposium on Algorithms, ESA 2018
Y2 - 20 August 2018 through 22 August 2018
ER -