SoK: Distributed Randomness Beacons

Kevin Choi, Aathira Manoj, Joseph Bonneau

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Motivated and inspired by the emergence of blockchains, many new protocols have recently been proposed for generating publicly verifiable randomness in a distributed yet secure fashion. These protocols work under different setups and assumptions, use various cryptographic tools, and entail unique trade-offs and characteristics. In this paper, we systematize the design of distributed randomness beacons (DRBs) as well as the cryptographic building blocks they rely on. We evaluate protocols on two key security properties, unbiasability and unpredictability, and discuss common attack vectors for predicting or biasing the beacon output and the countermeasures employed by protocols. We also compare protocols by communication and computational efficiency. Finally, we provide insights on the applicability of different protocols in various deployment scenarios and highlight possible directions for further research.

Original languageEnglish (US)
Title of host publicationProceedings - 44th IEEE Symposium on Security and Privacy, SP 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Number of pages18
ISBN (Electronic)9781665493369
StatePublished - 2023
Event44th IEEE Symposium on Security and Privacy, SP 2023 - Hybrid, San Francisco, United States
Duration: May 22 2023May 25 2023

Publication series

NameProceedings - IEEE Symposium on Security and Privacy
ISSN (Print)1081-6011


Conference44th IEEE Symposium on Security and Privacy, SP 2023
Country/TerritoryUnited States
CityHybrid, San Francisco

ASJC Scopus subject areas

  • Safety, Risk, Reliability and Quality
  • Software
  • Computer Networks and Communications


Dive into the research topics of 'SoK: Distributed Randomness Beacons'. Together they form a unique fingerprint.

Cite this