Solution-Processed Cu2Se nanocrystal films with bulk-like thermoelectric performance

Jason D. Forster, Jared J. Lynch, Nelson E. Coates, Jun Liu, Hyejin Jang, Edmond Zaia, Madeleine P. Gordon, Maxime Szybowski, Ayaskanta Sahu, David G. Cahill, Jeffrey J. Urban

Research output: Contribution to journalArticle

Abstract

Thermoelectric power generation can play a key role in a sustainable energy future by converting waste heat from power plants and other industrial processes into usable electrical power. Current thermoelectric devices, however, require energy intensive manufacturing processes such as alloying and spark plasma sintering. Here, we describe the fabrication of a p-type thermoelectric material, copper selenide (Cu2Se), utilizing solution-processing and thermal annealing to produce a thin film that achieves a figure of merit, ZT, which is as high as its traditionally processed counterpart, a value of 0.14 at room temperature. This is the first report of a fully solution-processed nanomaterial achieving performance equivalent to its bulk form and represents a general strategy to reduce the energy required to manufacture advanced energy conversion and harvesting materials.

Original languageEnglish (US)
Article number2765
JournalScientific reports
Volume7
Issue number1
DOIs
StatePublished - Dec 1 2017

ASJC Scopus subject areas

  • General

Fingerprint Dive into the research topics of 'Solution-Processed Cu<sub>2</sub>Se nanocrystal films with bulk-like thermoelectric performance'. Together they form a unique fingerprint.

Cite this