## Abstract

This study develops mathematical tools and approaches to investigate spatiotemporal patterns of firearm acquisition in the U.S. complemented by hypothesis testing and statistical analysis. First, state-level and nation-level instant background check (BC) data are employed as proxy of firearm acquisition corresponding to 1999-2021. The relative-phase time-series of BC in each U.S. state is recovered and utilized to calculate the time-series of the U.S. states' synchronization degree. We reveal that U.S. states present a high-level degree of synchronization except in 2010-2011 and after 2018. Comparing these results with respect to a sitting U.S. president provides additional information: specifically, any two presidential terms are characterized by statistically different synchronization degrees except G. W. Bush's first term and B. H. Obama's second term. Next, to detail variations of BC, short-time Fourier transform, dimensionality reduction techniques, and diffusion maps are implemented within a time-frequency representation. Firearm acquisition in the high frequency band is described by a low-dimensional embedding, in the form of a plane with two embedding coordinates. Data points on the embedding plane identify separate clusters that signify state transitions in the original BC data with respect to different time windows. Through this analysis, we reveal that the frequency content of the BC data has a time-dependent characteristic. By comparing the diffusion map at hand with respect to a presidential term, we find that at least one of the embedding coordinates presents statistically significant variations between any two presidential terms except B. H. Obama's first term and D. J. Trump's pre-COVID term. The results point at a possible interplay between firearm acquisition in the U.S. and a presidential term.

Original language | English (US) |
---|---|

Article number | 073115 |

Journal | Chaos |

Volume | 32 |

Issue number | 7 |

DOIs | |

State | Published - Jul 1 2022 |

## ASJC Scopus subject areas

- Statistical and Nonlinear Physics
- Mathematical Physics
- Physics and Astronomy(all)
- Applied Mathematics