@inproceedings{c570d4d209bb4b5e9317ecdaaa45f4ea,
title = "SphereFed: Hyperspherical Federated Learning",
abstract = "Federated Learning aims at training a global model from multiple decentralized devices (i.e. clients) without exchanging their private local data. A key challenge is the handling of non-i.i.d. (independent identically distributed) data across multiple clients that may induce disparities of their local features. We introduce the Hyperspherical Federated Learning (SphereFed) framework to address the non-i.i.d. issue by constraining learned representations of data points to be on a unit hypersphere shared by clients. Specifically, all clients learn their local representations by minimizing the loss with respect to a fixed classifier whose weights span the unit hypersphere. After federated training in improving the global model, this classifier is further calibrated with a closed-form solution by minimizing a mean squared loss. We show that the calibration solution can be computed efficiently and distributedly without direct access of local data. Extensive experiments indicate that our SphereFed approach is able to improve the accuracy of multiple existing federated learning algorithms by a considerable margin (up to 6% on challenging datasets) with enhanced computation and communication efficiency across datasets and model architectures.",
keywords = "Efficient classifier calibration, Federated learning",
author = "Xin Dong and Zhang, {Sai Qian} and Ang Li and Kung, {H. T.}",
note = "Publisher Copyright: {\textcopyright} 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.; 17th European Conference on Computer Vision, ECCV 2022 ; Conference date: 23-10-2022 Through 27-10-2022",
year = "2022",
doi = "10.1007/978-3-031-19809-0_10",
language = "English (US)",
isbn = "9783031198083",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Science and Business Media Deutschland GmbH",
pages = "165--184",
editor = "Shai Avidan and Gabriel Brostow and Moustapha Ciss{\'e} and Farinella, {Giovanni Maria} and Tal Hassner",
booktitle = "Computer Vision – ECCV 2022 - 17th European Conference, 2022, Proceedings",
address = "Germany",
}