SSMBA: Self-supervised manifold based data augmentation for improving out-of-domain robustness

Nathan Ng, Kyunghyun Cho, Marzyeh Ghassemi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Models that perform well on a training domain often fail to generalize to out-of-domain (OOD) examples. Data augmentation is a common method used to prevent overfitting and improve OOD generalization. However, in natural language, it is difficult to generate new examples that stay on the underlying data manifold. We introduce SSMBA, a data augmentation method for generating synthetic training examples by using a pair of corruption and reconstruction functions to move randomly on a data manifold. We investigate the use of SSMBA in the natural language domain, leveraging the manifold assumption to reconstruct corrupted text with masked language models. In experiments on robustness benchmarks across 3 tasks and 9 datasets, SSMBA consistently outperforms existing data augmentation methods and baseline models on both in-domain and OOD data, achieving gains of 0.8% accuracy on OOD Amazon reviews, 1.8% accuracy on OOD MNLI, and 1.4 BLEU on in-domain IWSLT14 German-English.

Original languageEnglish (US)
Title of host publicationEMNLP 2020 - 2020 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages1268-1283
Number of pages16
ISBN (Electronic)9781952148606
StatePublished - 2020
Event2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020 - Virtual, Online
Duration: Nov 16 2020Nov 20 2020

Publication series

NameEMNLP 2020 - 2020 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference

Conference

Conference2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020
CityVirtual, Online
Period11/16/2011/20/20

ASJC Scopus subject areas

  • Information Systems
  • Computer Science Applications
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'SSMBA: Self-supervised manifold based data augmentation for improving out-of-domain robustness'. Together they form a unique fingerprint.

Cite this