TY - JOUR
T1 - Stability of receding traveling waves for a fourth order degenerate parabolic free boundary problem
AU - Gnann, Manuel V.
AU - Ibrahim, Slim
AU - Masmoudi, Nader
N1 - Publisher Copyright:
© 2019 Elsevier Inc.
PY - 2019/4/30
Y1 - 2019/4/30
N2 - Consider the thin-film equation h t +(hh yyy ) y =0 with a zero contact angle at the free boundary, that is, at the triple junction where liquid, gas, and solid meet. Previous results on stability and well-posedness of this equation have focused on perturbations of equilibrium-stationary or self-similar profiles, the latter eventually wetting the whole surface. These solutions have their counterparts for the second-order porous-medium equation h t −(h m ) yy =0, where m>1 is a free parameter. Both porous-medium and thin-film equation degenerate as h↘0, but the porous-medium equation additionally fulfills a comparison principle while the thin-film equation does not. In this note, we consider traveling waves h=[Formula presented]x 3 +νx 2 for x≥0, where x=y−Vt and V,ν≥0 are free parameters. These traveling waves are receding and therefore describe de-wetting, a phenomenon genuinely linked to the fourth-order nature of the thin-film equation and not encountered in the porous-medium case as it violates the comparison principle. The linear stability analysis leads to a linear fourth-order degenerate-parabolic operator for which we prove maximal-regularity estimates to arbitrary orders of the expansion in x in a right-neighborhood of the contact line x=0. This leads to a well-posedness and stability result for the corresponding nonlinear equation. As the linearized evolution has different scaling as x↘0 and x→∞ the analysis is more intricate than in related previous works. We anticipate that our approach is a natural step towards investigating other situations in which the comparison principle is violated, such as droplet rupture.
AB - Consider the thin-film equation h t +(hh yyy ) y =0 with a zero contact angle at the free boundary, that is, at the triple junction where liquid, gas, and solid meet. Previous results on stability and well-posedness of this equation have focused on perturbations of equilibrium-stationary or self-similar profiles, the latter eventually wetting the whole surface. These solutions have their counterparts for the second-order porous-medium equation h t −(h m ) yy =0, where m>1 is a free parameter. Both porous-medium and thin-film equation degenerate as h↘0, but the porous-medium equation additionally fulfills a comparison principle while the thin-film equation does not. In this note, we consider traveling waves h=[Formula presented]x 3 +νx 2 for x≥0, where x=y−Vt and V,ν≥0 are free parameters. These traveling waves are receding and therefore describe de-wetting, a phenomenon genuinely linked to the fourth-order nature of the thin-film equation and not encountered in the porous-medium case as it violates the comparison principle. The linear stability analysis leads to a linear fourth-order degenerate-parabolic operator for which we prove maximal-regularity estimates to arbitrary orders of the expansion in x in a right-neighborhood of the contact line x=0. This leads to a well-posedness and stability result for the corresponding nonlinear equation. As the linearized evolution has different scaling as x↘0 and x→∞ the analysis is more intricate than in related previous works. We anticipate that our approach is a natural step towards investigating other situations in which the comparison principle is violated, such as droplet rupture.
KW - Degenerate-parabolic equations
KW - Fourth-order equation
KW - Free boundary problems
KW - Stability
KW - Thin film equation
KW - Traveling waves
UR - http://www.scopus.com/inward/record.url?scp=85063225242&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85063225242&partnerID=8YFLogxK
U2 - 10.1016/j.aim.2019.01.028
DO - 10.1016/j.aim.2019.01.028
M3 - Article
AN - SCOPUS:85063225242
SN - 0001-8708
VL - 347
SP - 1173
EP - 1243
JO - Advances in Mathematics
JF - Advances in Mathematics
ER -