Static and cyclic rocking on sand: Centrifuge versus reduced-scale LG experiments

P. Kokkali, I. Anastasopoulos, T. Abdoun, G. Gazetas

Research output: Chapter in Book/Report/Conference proceedingConference contribution


Shallow foundations supporting bridge piers, building frames, shear walls and monuments are often subjected to extreme lateral loading such as wind in offshore environments, or strong seismic shaking. Under such loading conditions, foundations may experience a host of non-linear phenomena: sliding on and uplifting from the supporting soil or even soil failure in the form of development of ultimate bearing capacity mechanisms. This type of response is accompanied by residual settlement and rotation of the supported structural system. Nevertheless, inelastic foundation performance can provide potential benefits to the overall seismic integrity of the structure. Thanks to such non-linearities, energy dissipation at or below the foundation level may eventually limit the seismic demand on structural elements. Several theoretical and experimental studies have provided encouraging evidence to this effect. This paper has a dual objective: first, to study the behaviour of shallow foundations under vertical and lateral monotonic loading and under lateral slow cyclic loading of progressively increasing amplitude; second, to explore the differences in foundation response between reduced-scale \g and centrifuge 50g model testing. Emphasis is placed on interpreting their discrepancies by unveiling the role of scale effects. The role of soil densification due to multiple loading cycles with uplifting is also highlighted.

Original languageEnglish (US)
Title of host publicationGeotechnical Earthquake Engineering - Geotechnique Symposium in Print 2015
EditorsStuart Haigh
PublisherICE Publishing
Number of pages16
ISBN (Electronic)9780727761491
StatePublished - 2015
EventGeotechnique Symposium 2015 - London, United Kingdom
Duration: Jun 15 2015 → …

Publication series

NameGeotechnical Earthquake Engineering - Geotechnique Symposium in Print 2015


OtherGeotechnique Symposium 2015
Country/TerritoryUnited Kingdom
Period6/15/15 → …


  • Bearing capacity
  • Centrifuge modelling
  • Footings/foundations
  • Settlement

ASJC Scopus subject areas

  • Geotechnical Engineering and Engineering Geology


Dive into the research topics of 'Static and cyclic rocking on sand: Centrifuge versus reduced-scale LG experiments'. Together they form a unique fingerprint.

Cite this