Statistical machine learning and dissolved gas analysis: A review

Piotr Mirowski, Yann Lecun

Research output: Contribution to journalArticlepeer-review


Dissolved gas analysis (DGA) of the insulation oil of power transformers is an investigative tool to monitor their health and to detect impending failures by recognizing anomalous patterns of DGA concentrations. We handle the failure prediction problem as a simple data-mining task on DGA samples, optionally exploiting the transformer's age, nominal power and voltage, and consider two approaches: 1) binary classification and 2) regression of the time to failure. We propose a simple logarithmic transform to preprocess DGA data in order to deal with long-tail distributions of concentrations. We have reviewed and evaluated 15 standard statistical machine-learning algorithms on that task, and reported quantitative results on a small but published set of power transformers and on proprietary data from thousands of network transformers of a utility company. Our results confirm that nonlinear decision functions, such as neural networks, support vector machines with Gaussian kernels, or local linear regression can theoretically provide slightly better performance than linear classifiers or regressors. Software and part of the data are available at

Original languageEnglish (US)
Article number6301810
Pages (from-to)1791-1799
Number of pages9
JournalIEEE Transactions on Power Delivery
Issue number4
StatePublished - 2012


  • Artificial intelligence
  • neural networks
  • power transformer insulation
  • prediction methods
  • statistics
  • transformers

ASJC Scopus subject areas

  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering


Dive into the research topics of 'Statistical machine learning and dissolved gas analysis: A review'. Together they form a unique fingerprint.

Cite this