Stiffness, strength, anisotropy, and buckling of lattices derived from TPMS and Platonic and Archimedean solids

Sumaya Altamimi, Dong Wook Lee, Imad Barsoum, Reza Rowshan, Iwona M. Jasiuk, Rashid K. Abu Al-Rub

Research output: Contribution to journalArticlepeer-review

Abstract

Lattice metamaterials have gained considerable attention due to their distinctive topological structures and multifunctional properties. In this work, the effect of topology, loading conditions, and relative density on the effective mechanical properties of various novel lattice architectures is investigated numerically and experimentally. Thirteen strut-based lattices derived from triply periodic minimal surfaces (five lattices) as well as Platonic (three lattices) and Archimedean (five lattices) solids are considered for the first time, and their anisotropic mechanical properties, including uniaxial, shear, and bulk moduli and strengths as well as their total stiffness, buckling strengths, Poisson’s ratio, and anisotropy are investigated as a function of a wide range of relative densities (0.1% to 37%). Finite element analysis is employed to capture the full effective behavior of these lattices using periodic boundary conditions. Bifurcation analysis is performed to predict the threshold relative density governing their buckling vs yielding deformation behavior. Selected lattice structures of various relative densities are 3D printed using polymer selective laser sintering additive manufacturing technique and tested under quasi-static uniaxial compression where the experimental and numerical results are compared. The numerical results indicate that the deformation behavior can be altered between stretching and bending dominated mode of deformation as function of loading. Archimedean lattices are shown to outperform a wide range of strut-based lattices. This work opens the doors for more investigations of the multifunctional properties of these novel types of lattices and their engineering applications. Furthermore, the generated comprehensive data are useful in optimizing latticed structures using topology optimization techniques.

Original languageEnglish (US)
JournalMechanics of Advanced Materials and Structures
DOIs
StateAccepted/In press - 2024

Keywords

  • Finite element analysis
  • additive manufacturing
  • anisotropy
  • cellular structures
  • mechanical properties
  • strut-based lattices

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • General Mathematics
  • General Materials Science
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Stiffness, strength, anisotropy, and buckling of lattices derived from TPMS and Platonic and Archimedean solids'. Together they form a unique fingerprint.

Cite this