Stochastic superparameterization in quasigeostrophic turbulence

Ian Grooms, Andrew J. Majda

Research output: Contribution to journalArticle

Abstract

In this article we expand and develop the authors' recent proposed methodology for efficient stochastic superparameterization algorithms for geophysical turbulence. Geophysical turbulence is characterized by significant intermittent cascades of energy from the unresolved to the resolved scales resulting in complex patterns of waves, jets, and vortices. Conventional superparameterization simulates large scale dynamics on a coarse grid in a physical domain, and couples these dynamics to high-resolution simulations on periodic domains embedded in the coarse grid. Stochastic superparameterization replaces the nonlinear, deterministic eddy equations on periodic embedded domains by quasilinear stochastic approximations on formally infinite embedded domains. The result is a seamless algorithm which never uses a small scale grid and is far cheaper than conventional SP, but with significant success in difficult test problems.Various design choices in the algorithm are investigated in detail here, including decoupling the timescale of evolution on the embedded domains from the length of the time step used on the coarse grid, and sensitivity to certain assumed properties of the eddies (e.g. the shape of the assumed eddy energy spectrum). We present four closures based on stochastic superparameterization which elucidate the properties of the underlying framework: a 'null hypothesis' stochastic closure that uncouples the eddies from the mean, a stochastic closure with nonlinearly coupled eddies and mean, a nonlinear deterministic closure, and a stochastic closure based on energy conservation. The different algorithms are compared and contrasted on a stringent test suite for quasigeostrophic turbulence involving two-layer dynamics on a β-plane forced by an imposed background shear.The success of the algorithms developed here suggests that they may be fruitfully applied to more realistic situations. They are expected to be particularly useful in providing accurate and efficient stochastic parameterizations for use in ensemble-based state estimation and prediction.

Original languageEnglish (US)
Pages (from-to)78-98
Number of pages21
JournalJournal of Computational Physics
Volume271
DOIs
StatePublished - Aug 15 2014

Keywords

  • Efficient subgrid scale closure
  • Multi-scale algorithms
  • Stochastic backscatter
  • Waves

ASJC Scopus subject areas

  • Numerical Analysis
  • Modeling and Simulation
  • Physics and Astronomy (miscellaneous)
  • Physics and Astronomy(all)
  • Computer Science Applications
  • Computational Mathematics
  • Applied Mathematics

Fingerprint Dive into the research topics of 'Stochastic superparameterization in quasigeostrophic turbulence'. Together they form a unique fingerprint.

  • Cite this