TY - GEN
T1 - Stochastic unsplittable flows
AU - Gupta, Anupam
AU - Karandikar, Archit
N1 - Publisher Copyright:
© Anupam Gupta and Archit Karandikar.
PY - 2017/8/1
Y1 - 2017/8/1
N2 - We consider the stochastic unsplittable flow problem: given a graph with edge-capacities, k source-sink pairs with each pair {sj , tj} having a size Sj and value vj , the goal is to route the pairs unsplittably while respecting edge capacities to maximize the total value of the routed pairs. However, the size Sj is a random variable and is revealed only after we decide to route pair j. Which pairs should we route, along which paths, and in what order so as to maximize the expected value? We present results for several cases of the problem under the no-bottleneck assumption. We show a logarithmic approximation algorithm for the single-sink problem on general graphs, considerably improving on the prior results of Chawla and Roughgarden which worked for planar graphs. We present an approximation to the stochastic unsplittable flow problem on directed acyclic graphs, within less than a logarithmic factor of the best known approximation in the nonstochastic setting. We present a non-adaptive strategy on trees that is within a constant factor of the best adaptive strategy, asymptotically matching the best results for the non-stochastic unsplittable flow problem on trees. Finally, we give results for the stochastic unsplittable flow problem on general graphs. Our techniques include using edge-confluent flows for the single-sink problem in order to control the interaction between flow-paths, and a reduction from general scheduling policies to "safe" ones (i.e., those guaranteeing no capacity violations), which may be of broader interest.
AB - We consider the stochastic unsplittable flow problem: given a graph with edge-capacities, k source-sink pairs with each pair {sj , tj} having a size Sj and value vj , the goal is to route the pairs unsplittably while respecting edge capacities to maximize the total value of the routed pairs. However, the size Sj is a random variable and is revealed only after we decide to route pair j. Which pairs should we route, along which paths, and in what order so as to maximize the expected value? We present results for several cases of the problem under the no-bottleneck assumption. We show a logarithmic approximation algorithm for the single-sink problem on general graphs, considerably improving on the prior results of Chawla and Roughgarden which worked for planar graphs. We present an approximation to the stochastic unsplittable flow problem on directed acyclic graphs, within less than a logarithmic factor of the best known approximation in the nonstochastic setting. We present a non-adaptive strategy on trees that is within a constant factor of the best adaptive strategy, asymptotically matching the best results for the non-stochastic unsplittable flow problem on trees. Finally, we give results for the stochastic unsplittable flow problem on general graphs. Our techniques include using edge-confluent flows for the single-sink problem in order to control the interaction between flow-paths, and a reduction from general scheduling policies to "safe" ones (i.e., those guaranteeing no capacity violations), which may be of broader interest.
KW - Approximation Algorithms
KW - Confluent flows
KW - Stochastic optimization
KW - Unsplittable flows
UR - http://www.scopus.com/inward/record.url?scp=85028730791&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85028730791&partnerID=8YFLogxK
U2 - 10.4230/LIPIcs.APPROX/RANDOM.2017.7
DO - 10.4230/LIPIcs.APPROX/RANDOM.2017.7
M3 - Conference contribution
AN - SCOPUS:85028730791
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques - 20th International Workshop, APPROX 2017 and 21st International Workshop, RANDOM 2017
A2 - Rolim, Jose D. P.
A2 - Jansen, Klaus
A2 - Williamson, David P.
A2 - Vempala, Santosh S.
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 20th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2017 and the 21st International Workshop on Randomization and Computation, RANDOM 2017
Y2 - 16 August 2017 through 18 August 2017
ER -