TY - JOUR
T1 - Stratospheric versus tropospheric control of the strength and structure of the Brewer-Dobson circulation
AU - Gerber, Edwin P.
PY - 2012/9
Y1 - 2012/9
N2 - The strength and structure of the Brewer-Dobson circulation (BDC) are explored in an idealized general circulation model. It is shown that diabatic forcing of the stratosphere and planetary wave forcing by the troposphere can have comparable effects on tracer transport through the stratosphere, as quantified by the mean age of air and age spectrum. Their impact, however, is mediated through different controls on the mass circulation. Planetarywaves aremodulated by changing surface topography. Increasedwave forcing strengthens the circulation, particularly at lower levels. This is primarily a tropospheric control on the BDC, as the wave forcing is set by stationary waves at the base of the stratosphere. Stratospheric control of the circulation is effected indirectly through the strength of the stratospheric polar vortex.Acolder vortex creates a waveguide higher into the stratosphere, raising the breaking level of Rossby waves and deepening the circulation. Ventilation of mass in the stratosphere depends critically on the depth of tropical upwelling, and so mass and tracer transport is comparably sensitive to both tropospheric and stratospheric controls. The two controls on the circulation can lead to separate influences on the lower and upper stratosphere, with implications for the seasonal cycle of tropical upwelling. They allow for independent changes in the "shallow" and "deep" branches of the BDC, which may be important for comparing modeled trends with observations. It is also shown that changes in the BDC have a significant impact on the tropical cold point (on the order of degrees) and the equator-to-pole gradient in the tropopause (on the order of a kilometer).
AB - The strength and structure of the Brewer-Dobson circulation (BDC) are explored in an idealized general circulation model. It is shown that diabatic forcing of the stratosphere and planetary wave forcing by the troposphere can have comparable effects on tracer transport through the stratosphere, as quantified by the mean age of air and age spectrum. Their impact, however, is mediated through different controls on the mass circulation. Planetarywaves aremodulated by changing surface topography. Increasedwave forcing strengthens the circulation, particularly at lower levels. This is primarily a tropospheric control on the BDC, as the wave forcing is set by stationary waves at the base of the stratosphere. Stratospheric control of the circulation is effected indirectly through the strength of the stratospheric polar vortex.Acolder vortex creates a waveguide higher into the stratosphere, raising the breaking level of Rossby waves and deepening the circulation. Ventilation of mass in the stratosphere depends critically on the depth of tropical upwelling, and so mass and tracer transport is comparably sensitive to both tropospheric and stratospheric controls. The two controls on the circulation can lead to separate influences on the lower and upper stratosphere, with implications for the seasonal cycle of tropical upwelling. They allow for independent changes in the "shallow" and "deep" branches of the BDC, which may be important for comparing modeled trends with observations. It is also shown that changes in the BDC have a significant impact on the tropical cold point (on the order of degrees) and the equator-to-pole gradient in the tropopause (on the order of a kilometer).
UR - http://www.scopus.com/inward/record.url?scp=84867946835&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84867946835&partnerID=8YFLogxK
U2 - 10.1175/JAS-D-11-0341.1
DO - 10.1175/JAS-D-11-0341.1
M3 - Article
AN - SCOPUS:84867946835
SN - 0022-4928
VL - 69
SP - 2857
EP - 2877
JO - Journal of the Atmospheric Sciences
JF - Journal of the Atmospheric Sciences
IS - 9
ER -