Structure-based determination of imaging length for super-resolution localization microscopy

Kuan Chieh Jackie Chen, Jelena Kovačević, Ge Yang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Localization-based super-resolution techniques are revolutionizing biological research by breaking the diffraction limit of fluorescence microscopy. Each super-resolution image is reconstructed from a time series of images of randomly activated fluorophores. Here, a fundamental question is to determine the minimal imaging length so that the reconstructed image faithfully reflects the biological structures under observation. So far, proposed methods focus entirely on image resolution, which reflects localization uncertainty and fluorophore density, without taking into account the fact that images of biological structures are structured rather than random patterns. Here, we propose a different approach to determine imaging length based on direct quantification of image structural information using Gabor filters. Experimental results show that this approach is superior over approaches that only account for image-intensity distribution, confirming the importance of using structural information. In contrast to resolution-based methods, our method does not require an artificial selection of image resolution and provides a statistically rigorous strategy for determining imaging length based on image structural information.

Original languageEnglish (US)
Title of host publication2014 IEEE 11th International Symposium on Biomedical Imaging, ISBI 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages991-994
Number of pages4
ISBN (Electronic)9781467319591
DOIs
StatePublished - Jul 29 2014
Event2014 IEEE 11th International Symposium on Biomedical Imaging, ISBI 2014 - Beijing, China
Duration: Apr 29 2014May 2 2014

Publication series

Name2014 IEEE 11th International Symposium on Biomedical Imaging, ISBI 2014

Other

Other2014 IEEE 11th International Symposium on Biomedical Imaging, ISBI 2014
Country/TerritoryChina
CityBeijing
Period4/29/145/2/14

Keywords

  • Determining imaging length
  • Fluorescence imaging
  • STORM
  • Super-resolution microscopy

ASJC Scopus subject areas

  • Biomedical Engineering
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Structure-based determination of imaging length for super-resolution localization microscopy'. Together they form a unique fingerprint.

Cite this