Structured and viscous water in subnanometer gaps

Tai De Li, Jianping Gao, Robert Szoszkiewicz, Uzi Landman, Elisa Riedo

Research output: Contribution to journalArticlepeer-review


Direct and simultaneous measurements of the normal and lateral forces encountered by a nanosize spherical silicon tip approaching a solid surface in purified water are reported. For tip-surface distances, 0±0.03 nm<d<2 nm, experiments and grand canonical molecular-dynamics simulations find oscillatory solvation forces for hydrophilic surfaces, mica and glass, and less pronounced oscillations for a hydrophobic surface, graphite. The simulations reveal layering of the confined water density and the development of hexagonal order in layers proximal to a quartz surface. For subnanometer hydrophilic confinement, the lateral force measurements show orders of magnitude increase of the viscosity with respect to bulk water, agreeing with a simulated sharp decrease in the diffusion constant. No viscosity increase is observed for hydrophobic surfaces.

Original languageEnglish (US)
Article number115415
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number11
StatePublished - Mar 15 2007

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics


Dive into the research topics of 'Structured and viscous water in subnanometer gaps'. Together they form a unique fingerprint.

Cite this