TY - JOUR
T1 - Structures, metal ion affinities, and fluorescence properties of soluble derivatives of tris((6-phenyl-2-pyridyl)methyl)amine
AU - Liang, Jian
AU - Zhang, Jing
AU - Zhu, Lei
AU - Duarandin, Alexander
AU - Young, Victor G.
AU - Geacintov, Nicholas
AU - Canary, James W.
PY - 2009
Y1 - 2009
N2 - Metal complexes of tris((6-phenyl-2-pyridyl)methyl)amine (2) have hydrophobic cavities that potentially accommodate small molecules. However, the utility of this attractive motif has been hampered by the poor solubility of such complexes in many common solvents. In this study, two tripodal ligands (3, tris-[6-(3,4,5-trimethoxy-phenyl)-pyridin-2-ylmethyl]-amine, and 4, tris((6-(3,4,5-tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)phenyl)pyridin-2-yl) methyl)amine) derived from 2 were prepared with enhanced solubility in organic and aqueous solvents. The X-ray crystallographic analyses of selected ligands and complexes revealed that the hydrophobic cavities inside the zinc complexes were retained after derivatization. Fluorescence, nuclear magnetic resonance (NMR), and potentiometrie titration studies, which were enabled by the improved solubility, were performed to investigate the binding properties of the soluble ligands (3 and 4) with metal ions such as Zn2+ and Cu2+. When saturating quantities of Zn2+ ions are added to ligand 3 in acetonitrile, the fluorescence emission maximum exhibits a pronounced red shift of ∼80 nm (from 376 to 457 nm) and is enhanced by a factor of >100 when measured at 520 nm. The fluorescence properties of the Zn2+ ion-coordinated ligands in the Zn(3) complex are consistent with a charge-transfer character in the excited state, with possible contributions from a penalization of the pyridyl-trimethoxyphenyl groups in the excited state, and from excitonic interactions.
AB - Metal complexes of tris((6-phenyl-2-pyridyl)methyl)amine (2) have hydrophobic cavities that potentially accommodate small molecules. However, the utility of this attractive motif has been hampered by the poor solubility of such complexes in many common solvents. In this study, two tripodal ligands (3, tris-[6-(3,4,5-trimethoxy-phenyl)-pyridin-2-ylmethyl]-amine, and 4, tris((6-(3,4,5-tris(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)phenyl)pyridin-2-yl) methyl)amine) derived from 2 were prepared with enhanced solubility in organic and aqueous solvents. The X-ray crystallographic analyses of selected ligands and complexes revealed that the hydrophobic cavities inside the zinc complexes were retained after derivatization. Fluorescence, nuclear magnetic resonance (NMR), and potentiometrie titration studies, which were enabled by the improved solubility, were performed to investigate the binding properties of the soluble ligands (3 and 4) with metal ions such as Zn2+ and Cu2+. When saturating quantities of Zn2+ ions are added to ligand 3 in acetonitrile, the fluorescence emission maximum exhibits a pronounced red shift of ∼80 nm (from 376 to 457 nm) and is enhanced by a factor of >100 when measured at 520 nm. The fluorescence properties of the Zn2+ ion-coordinated ligands in the Zn(3) complex are consistent with a charge-transfer character in the excited state, with possible contributions from a penalization of the pyridyl-trimethoxyphenyl groups in the excited state, and from excitonic interactions.
UR - http://www.scopus.com/inward/record.url?scp=72949114120&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=72949114120&partnerID=8YFLogxK
U2 - 10.1021/ic901662z
DO - 10.1021/ic901662z
M3 - Article
C2 - 19877674
AN - SCOPUS:72949114120
SN - 0020-1669
VL - 48
SP - 11196
EP - 11208
JO - Inorganic Chemistry
JF - Inorganic Chemistry
IS - 23
ER -