Abstract
We have studied sub-optical wavelength atomic gratings generated by the interference of atomic de Broglie waves in a time-domain interferometer. Three short optical standing-wave pulses, detuned from resonance with a cloud of approximately 100 μK 85Rb atoms, act as phase gratings for atomic matter waves. Shortly after the first pulse, a modulation in the atomic density containing spatial harmonics of period λ/2N appears (λ is the optical wavelength, and N is any integer) and then rapidly vanishes due to the atomic thermal motion. The cloud maintains phase memory of this modulation, however, and the second pulse (applied at time T after the first one) results in a temporal sequence of atomic density gratings of periods λ/2N. The appearance of a grating is referred to as an echo. The third pulse (and a subsequent traveling wave pulse) is used to detect these gratings. By this technique, we have created and detected in real time a grating with period λ/4 at time 1.5 T after the first pulse and observed new types of `echoes' caused by interaction of the de Broglie waves with all three phase gratings. This ability to produce sub-wavelength structures makes our techniques applicable to atomic beam lithography.
Original language | English (US) |
---|---|
Pages (from-to) | 234-235 |
Number of pages | 2 |
Journal | Proceedings of SPIE - The International Society for Optical Engineering |
Volume | 3749 |
State | Published - 1999 |
Event | Proceedings of the 1999 18th Congress of the International Commission for Optics (ICO XVIII): Optics for the Next Millennium - San Francisco, CA, USA Duration: Aug 2 1999 → Aug 6 1999 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Computer Science Applications
- Applied Mathematics
- Electrical and Electronic Engineering