Subdivision Methods for Sum-Of-Distances Problems: Fermat-Weber Point, n-Ellipses and the Min-Sum Cluster Voronoi Diagram

Ioannis Mantas, Evanthia Papadopoulou, Martin Suderland, Chee Yap

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Given a set P of n points, the sum of distances function of a point x is dPpxq:“rpPP ||x ´ p||. Using a subdivision approach with soft predicates we implement and visualize approximate solutions for three different problems involving the sum of distances function in R2. Namely, (1) finding the Fermat-Weber point, (2) constructing n-ellipses of a given set of points, and (3) constructing the nearest Voronoi diagram under the sum of distances function, given a set of point clusters as sites.

Original languageEnglish (US)
Title of host publication38th International Symposium on Computational Geometry, SoCG 2022
EditorsXavier Goaoc, Michael Kerber
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959772273
DOIs
StatePublished - Jun 1 2022
Event38th International Symposium on Computational Geometry, SoCG 2022 - Berlin, Germany
Duration: Jun 7 2022Jun 10 2022

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume224
ISSN (Print)1868-8969

Conference

Conference38th International Symposium on Computational Geometry, SoCG 2022
Country/TerritoryGermany
CityBerlin
Period6/7/226/10/22

Keywords

  • Fermat distance
  • Fermat point
  • Weber point
  • cluster Voronoi diagram
  • geometric median
  • min-sum Voronoi diagram
  • multifocal ellipse
  • n-ellipse
  • sum of distances

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Subdivision Methods for Sum-Of-Distances Problems: Fermat-Weber Point, n-Ellipses and the Min-Sum Cluster Voronoi Diagram'. Together they form a unique fingerprint.

Cite this