Subverting Privacy-Preserving GANs: Hiding Secrets in Sanitized Images

Kang Liu, Benjamin Tan, Siddharth Garg

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Unprecedented data collection and sharing have exacerbated privacy concerns and led to increasing interest in privacy-preserving tools that remove sensitive attributes from images while maintaining useful information for other tasks. Currently, state-of-the-art approaches use privacy-preserving generative adversarial networks (PP-GANs) for this purpose, for instance, to enable reliable facial expression recognition without leaking users' identity. However, PP-GANs do not offer formal proofs of privacy and instead rely on experimentally measuring information leakage using classification accuracy on the sensitive attributes of deep learning (DL)based discriminators. In this work, we question the rigor of such checks by subverting existing privacy-preserving GANs for facial expression recognition. We show that it is possible to hide the sensitive identification data in the sanitized output images of such PP-GANs for later extraction, which can even allow for reconstruction of the entire input images, while satisfying privacy checks. We demonstrate our approach via a PP-GAN-based architecture and provide qualitative and quantitative evaluations using two public datasets. Our experimental results raise fundamental questions about the need for more rigorous privacy checks of PP-GANs, and we provide insights into the social impact of these.

Original languageEnglish (US)
Title of host publication35th AAAI Conference on Artificial Intelligence, AAAI 2021
PublisherAssociation for the Advancement of Artificial Intelligence
Pages14849-14856
Number of pages8
ISBN (Electronic)9781713835974
StatePublished - 2021
Event35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online
Duration: Feb 2 2021Feb 9 2021

Publication series

Name35th AAAI Conference on Artificial Intelligence, AAAI 2021
Volume17A

Conference

Conference35th AAAI Conference on Artificial Intelligence, AAAI 2021
CityVirtual, Online
Period2/2/212/9/21

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Subverting Privacy-Preserving GANs: Hiding Secrets in Sanitized Images'. Together they form a unique fingerprint.

Cite this