TY - JOUR
T1 - Summary of the DREAM8 Parameter Estimation Challenge
T2 - Toward Parameter Identification for Whole-Cell Models
AU - DREAM8 Parameter Estimation Challenge Consortium
AU - Karr, Jonathan R.
AU - Williams, Alex H.
AU - Zucker, Jeremy D.
AU - Raue, Andreas
AU - Steiert, Bernhard
AU - Timmer, Jens
AU - Kreutz, Clemens
AU - Hu, Yucheng
AU - Baron, Michael
AU - Bryson, Kevin
AU - Barker, Brandon
AU - Bogart, Elijah
AU - Wang, Yiping
AU - Chandramohan, Dhruva
AU - Huang, Lei
AU - Zawack, Kelson
AU - Shestov, Alexander A.
AU - Makadia, Hiren
AU - DeCicco, Danielle
AU - Yin, Alex
AU - Wang, Mengqing
AU - Li, Shuai Cheng
AU - Swistak, Marcin
AU - Cygan, Mateusz
AU - Kazakiewicz, Denis
AU - Kursa, Miron B.
AU - Korytkowski, Przemyslaw
AU - Plewczynski, Dariusz
AU - Yang, Jichen
AU - Li, Yajuan
AU - Tang, Hao
AU - Wang, Tao
AU - Liu, Yueming
AU - Xie, Yang
AU - Xiao, Guanghua
AU - Bello, Julian
AU - Botero Rozo, David Octavio
AU - Cañas-Duarte, Silvia Johana
AU - Castro, Juan Camilo
AU - Gomez, Fabio
AU - Valdes, Ivan
AU - Vivas, Laura González
AU - Bernal, Adriana
AU - Pedraza Leal, Juan Manual
AU - Restrepo, Silvia
AU - Muñoz, Alejandro Reyes
AU - Wilkinson, Simon
AU - Allgood, Brandon A.
AU - Bot, Brian M.
AU - Hoff, Bruce R.
N1 - Publisher Copyright:
© 2015 Karr et al.
PY - 2015/5/1
Y1 - 2015/5/1
N2 - Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM) 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model’s structure and in silico “experimental” data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation.
AB - Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM) 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model’s structure and in silico “experimental” data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation.
UR - http://www.scopus.com/inward/record.url?scp=84930603902&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84930603902&partnerID=8YFLogxK
U2 - 10.1371/journal.pcbi.1004096
DO - 10.1371/journal.pcbi.1004096
M3 - Article
C2 - 26020786
AN - SCOPUS:84930603902
SN - 1553-734X
VL - 11
JO - PLoS computational biology
JF - PLoS computational biology
IS - 5
M1 - e1004096
ER -