Superoxide-induced stimulation of protein kinase C via thiol modification and modulation of zinc content

Lauren T. Knapp, Eric Klann

Research output: Contribution to journalArticlepeer-review

Abstract

We investigated the effects of mild oxidation on protein kinase C (PKC) using the xanthine/xanthine oxidase system of generating superoxide. Exposure of various PKC preparations to superoxide stimulated the autonomous activity of PKC. Similarly, thiol oxidation increased autonomous PKC activity, consistent with the notion that superoxide stimulates PKC via thiol oxidation. The superoxide-induced stimulation of PKC activity was partially reversed by reducing agents, suggesting that disulfide bond formation contributed to the oxidative stimulation of PKC. In addition, superoxide increased the autonomous activity of the α, β(II), ε, and ζ PKC isoforms, all of which contain at least one cysteinerich region. Taken together, our observations suggested that superoxide interacts with PKC at the cysteine-rich region, zinc finger motif of the enzyme. Therefore, we examined the effects of superoxide on this region by testing the hypothesis that superoxide stimulates PKC by promoting the release of zinc from PKC. We found that a zinc chelator stimulated the autonomous activity of PKC and that superoxide induced zinc release from an PKC-enriched enzyme preparation. In addition, oxidized PKC contained significantly less zinc than reduced PKC. Finally, we have isolated a persistent, autonomously active PKC by DEAE-cellulose column chromatography from hippocampal slices incubated with superoxide. Taken together, these data suggest that superoxide stimulates autonomous PKC activity via thiol oxidation and release of zinc from cysteine-rich region of PKC.

Original languageEnglish (US)
Pages (from-to)24136-24145
Number of pages10
JournalJournal of Biological Chemistry
Volume275
Issue number31
DOIs
StatePublished - Aug 4 2000

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Superoxide-induced stimulation of protein kinase C via thiol modification and modulation of zinc content'. Together they form a unique fingerprint.

Cite this