Supervision via competition: Robot adversaries for learning tasks

Lerrel Pinto, James Davidson, Abhinav Gupta

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

There has been a recent paradigm shift in robotics to data-driven learning for planning and control. Due to large number of experiences required for training, most of these approaches use a self-supervised paradigm: using sensors to measure success/failure. However, in most cases, these sensors provide weak supervision at best. In this work, we propose an adversarial learning framework that pits an adversary against the robot learning the task. In an effort to defeat the adversary, the original robot learns to perform the task with more robustness leading to overall improved performance. We show that this adversarial framework forces the robot to learn a better grasping model in order to overcome the adversary. By grasping 82% of presented novel objects compared to 68% without an adversary, we demonstrate the utility of creating adversaries. We also demonstrate via experiments that having robots in adversarial setting might be a better learning strategy as compared to having collaborative multiple robots. For supplementary video see: youtu.be/QfK3Bqhc6Sk.

Original languageEnglish (US)
Title of host publicationICRA 2017 - IEEE International Conference on Robotics and Automation
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1601-1608
Number of pages8
ISBN (Electronic)9781509046331
DOIs
StatePublished - Jul 21 2017
Event2017 IEEE International Conference on Robotics and Automation, ICRA 2017 - Singapore, Singapore
Duration: May 29 2017Jun 3 2017

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2017 IEEE International Conference on Robotics and Automation, ICRA 2017
CountrySingapore
CitySingapore
Period5/29/176/3/17

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Supervision via competition: Robot adversaries for learning tasks'. Together they form a unique fingerprint.

Cite this