Sweeping Arrangements of Non-Piercing Regions in the Plane

Suryendu Dalal, Rahul Gangopadhyay, Rajiv Raman, Saurabh Ray

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Let Γ be a finite set of Jordan curves in the plane. For any curve γ ∈ Γ, we denote the bounded region enclosed by γ as γ̃. We say that Γ is a non-piercing family if for any two curves α, β ∈ Γ, α̃ \β̃ is a connected region. A non-piercing family of curves generalizes a family of 2-intersecting curves in which each pair of curves intersect in at most two points. Snoeyink and Hershberger (“Sweeping Arrangements of Curves”, SoCG’89) proved that if we are given a family Γ of 2-intersecting curves and a sweep curve γ ∈ Γ, then the arrangement can be swept by γ while always maintaining the 2-intersecting property of the curves. We generalize the result of Snoeyink and Hershberger to the setting of non-piercing curves. We show that given an arrangement of non-piercing curves Γ, and a sweep curve γ ∈ Γ, the arrangement can be swept by γ so that the arrangement remains non-piercing throughout the process. We also give a shorter and simpler proof of the result of Snoeyink and Hershberger, and give an eclectic set of applications.

Original languageEnglish (US)
Title of host publication40th International Symposium on Computational Geometry, SoCG 2024
EditorsWolfgang Mulzer, Jeff M. Phillips
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959773164
DOIs
StatePublished - Jun 2024
Event40th International Symposium on Computational Geometry, SoCG 2024 - Athens, Greece
Duration: Jun 11 2024Jun 14 2024

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume293
ISSN (Print)1868-8969

Conference

Conference40th International Symposium on Computational Geometry, SoCG 2024
Country/TerritoryGreece
CityAthens
Period6/11/246/14/24

Keywords

  • Discrete Geometry
  • Pseudodisks
  • Sweeping
  • Topology

ASJC Scopus subject areas

  • Software

Fingerprint

Dive into the research topics of 'Sweeping Arrangements of Non-Piercing Regions in the Plane'. Together they form a unique fingerprint.

Cite this