Abstract
A PRINCIPAL goal of biotechnology is the assembly of novel biomaterials for analytical, industrial and therapeutic purposes. The advent of stable immobile nucleic acid branched junctions1-4 makes DNA a good candidate for building frameworks to which proteins or other functional molecules can be attached and thereby juxtaposed5-7. The addition of single-stranded 'sticky' ends8 to branched DNA molecules converts them into macromolecular valence clusters that can be ligated together1. The edges of these frameworks are double-helical DNA, and the vertices correspond to the branch points of junctions. Here, we report the construction from DNA of a covalently closed cube-like molecular complex containing twelve equal-length double-helical edges arranged about eight vertices. Each of the six 'faces' of the object is a single-stranded cyclic molecule, doubly catenated to four neighbouring strands, and each vertex is connected by an edge to three others. Each edge contains a unique restriction site for analytical purposes. This is the first construction of a closed polyhedral object from DNA.
Original language | English (US) |
---|---|
Pages (from-to) | 631-633 |
Number of pages | 3 |
Journal | Nature |
Volume | 350 |
Issue number | 6319 |
DOIs | |
State | Published - 1991 |
ASJC Scopus subject areas
- General