Synthesis from DNA of a molecule with the connectivity of a cube

Junghuei Chen, Nadrian C. Seeman

Research output: Contribution to journalArticlepeer-review


A PRINCIPAL goal of biotechnology is the assembly of novel biomaterials for analytical, industrial and therapeutic purposes. The advent of stable immobile nucleic acid branched junctions1-4 makes DNA a good candidate for building frameworks to which proteins or other functional molecules can be attached and thereby juxtaposed5-7. The addition of single-stranded 'sticky' ends8 to branched DNA molecules converts them into macromolecular valence clusters that can be ligated together1. The edges of these frameworks are double-helical DNA, and the vertices correspond to the branch points of junctions. Here, we report the construction from DNA of a covalently closed cube-like molecular complex containing twelve equal-length double-helical edges arranged about eight vertices. Each of the six 'faces' of the object is a single-stranded cyclic molecule, doubly catenated to four neighbouring strands, and each vertex is connected by an edge to three others. Each edge contains a unique restriction site for analytical purposes. This is the first construction of a closed polyhedral object from DNA.

Original languageEnglish (US)
Pages (from-to)631-633
Number of pages3
Issue number6319
StatePublished - 1991

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Synthesis from DNA of a molecule with the connectivity of a cube'. Together they form a unique fingerprint.

Cite this