Systematic analysis of microfluidic probe design and operation

Thomas Gervais, Mohammadali Safavieh, Mohammad A. Qasaimeh, David Juncker

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Microfluidic probes are an emerging tool used in a wide range of applications including surface biopatterning, immunohistology, and cell migration studies. They control flow above a surface by simultaneously injecting and aspirating fluids from a pen-like structure positioned a few tens of microns above a surface. Rather than confining flows inside microchannels they rely on recirculating flow patterns between the probe tip and the substrate to create a hydrodynamic flow confinement (HFC) zone in which reagents can be locally delivered to the surface. In this paper, we provide a theoretical model, supported by numerical simulations and experimental data, describing the extent of the HFC as a function of the two most important probe operation parameters, the ratio of aspiration to injection flow rate, and the distance between probe apertures. Two types of probes are studied: two-aperture microfluidic probes (MFPs) and microfluidic quadrupoles (MQs). In both cases, the model yields very accurate results and suggests a simple underlying theory based on 2D potential flows to understand probe operation. We further highlight how the model can be used to precisely control the probe's 'brush stroke' while in surface patterning mode. The understanding of probe operation made possible through the provided analytical model should lay the bases for computer-controlled probe calibration and operation.

Original languageEnglish (US)
Title of host publication2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1567-1570
Number of pages4
ISBN (Electronic)9781424479290
DOIs
StatePublished - Nov 2 2014
Event2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014 - Chicago, United States
Duration: Aug 26 2014Aug 30 2014

Publication series

Name2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014

Other

Other2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
Country/TerritoryUnited States
CityChicago
Period8/26/148/30/14

ASJC Scopus subject areas

  • Health Informatics
  • Computer Science Applications
  • Biomedical Engineering
  • Medicine(all)

Fingerprint

Dive into the research topics of 'Systematic analysis of microfluidic probe design and operation'. Together they form a unique fingerprint.

Cite this