TY - JOUR
T1 - Targeted deletion of hepatic Igf1 in TRAMP mice leads to dramatic alterations in the circulating insulin-like growth factor axis but does not reduce tumor progression
AU - Anzo, Makoto
AU - Cobb, Laura J.
AU - Hwang, David L.
AU - Mehta, Hemal
AU - Said, Jonathan W.
AU - Yakar, Shoshana
AU - LeRoith, Derek
AU - Cohen, Pinchas
PY - 2008/5/1
Y1 - 2008/5/1
N2 - The role of systemic and local insulin-like growth factor I (IGF-I) in the development of prostate cancer is still controversial. Transgenic adenocarcinoma mouse prostate (TRAMP) mice express the SV40 T-antigen under the control of the probasin promoter, and spontaneously develop prostate cancer. We crossed TRAMP mice with liver IGF-deficient (LID) mice to produce LID-TRAMP mice, a mouse model of prostate cancer with low serum IGF-I, to allow us to study the effect of circulatory IGF-I levels on the development of prostate cancer. LID mice have a targeted deletion of the hepatic Igf1 gene but retain normal expression of Igf1 in extrahepatic tissues. Serum IGF-I and IGFBP-3 levels in LID and LID-TRAMP mice were measured using novel assays, which showed that they are ∼10% and 60% of control L/L- mice, respectively. Serum growth hormone (GH) levels of LID-TRAMP mice were 3.5-fold elevated relative to L/L-TRAMP mice (P < 0.001), but IGFBP-2 levels were not different. Surprisingly, rates of survival, metastasis, and the ratio of genitourinary tissue weight to body weight were not significantly different between LID-TRAMP and L/L-TRAMP mice. There was also no difference in the pathologic stage of the prostate cancer between the two groups at 9 to 19 weeks of age. LID-TRAMP tumors displayed increased levels of GH receptors and increased Akt phosphorylation. These results are in striking contrast with the published model of the GH-deficient lit/lit-TRAMP, which has smaller tumors and improved survival, and indicate that the reduction in systemic IGF-I is not sufficient to inhibit prostate cancer tumor progression in the TRAMP model, which may require a reduction of GH levels as well.
AB - The role of systemic and local insulin-like growth factor I (IGF-I) in the development of prostate cancer is still controversial. Transgenic adenocarcinoma mouse prostate (TRAMP) mice express the SV40 T-antigen under the control of the probasin promoter, and spontaneously develop prostate cancer. We crossed TRAMP mice with liver IGF-deficient (LID) mice to produce LID-TRAMP mice, a mouse model of prostate cancer with low serum IGF-I, to allow us to study the effect of circulatory IGF-I levels on the development of prostate cancer. LID mice have a targeted deletion of the hepatic Igf1 gene but retain normal expression of Igf1 in extrahepatic tissues. Serum IGF-I and IGFBP-3 levels in LID and LID-TRAMP mice were measured using novel assays, which showed that they are ∼10% and 60% of control L/L- mice, respectively. Serum growth hormone (GH) levels of LID-TRAMP mice were 3.5-fold elevated relative to L/L-TRAMP mice (P < 0.001), but IGFBP-2 levels were not different. Surprisingly, rates of survival, metastasis, and the ratio of genitourinary tissue weight to body weight were not significantly different between LID-TRAMP and L/L-TRAMP mice. There was also no difference in the pathologic stage of the prostate cancer between the two groups at 9 to 19 weeks of age. LID-TRAMP tumors displayed increased levels of GH receptors and increased Akt phosphorylation. These results are in striking contrast with the published model of the GH-deficient lit/lit-TRAMP, which has smaller tumors and improved survival, and indicate that the reduction in systemic IGF-I is not sufficient to inhibit prostate cancer tumor progression in the TRAMP model, which may require a reduction of GH levels as well.
UR - http://www.scopus.com/inward/record.url?scp=44849114351&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=44849114351&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-07-3165
DO - 10.1158/0008-5472.CAN-07-3165
M3 - Article
C2 - 18451161
AN - SCOPUS:44849114351
SN - 0008-5472
VL - 68
SP - 3342
EP - 3349
JO - Cancer Research
JF - Cancer Research
IS - 9
ER -