Tensile behavior of compression molded glass microballoon/HDPE syntactic foams

M. L. Jayavardhan, B. R. Bharath Kumar, M. Doddamani, S. E. Zeltmann, N. Gupta

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Tensile behavior of glass microballoon (GMB) reinforced high density polyethylene (HDPE) matrix syntactic foams is investigated in the present study. GMB's having true particle density 350 kg/m3 are varied in 0, 20, 40 and 60 by vol. % in HDPE matrix using brabender and subsequently compression molded to form the syntactic foam sheets. Experimental results show that the modulus increases while strength decreases with increase in microballoon content. Syntactic foams present lower fracture strain as compared to neat HDPE. For designing syntactic foam microstructures with desired properties theoretical model can be effectively utilized.

Original languageEnglish (US)
Title of host publicationProceedings of the American Society for Composites - 31st Technical Conference, ASC 2016
EditorsBarry D. Davidson, Michael W. Czabaj, James G. Ratcliffe
PublisherDEStech Publications Inc.
ISBN (Electronic)9781605953168
StatePublished - 2016
Event31st Annual Technical Conference of the American Society for Composites, ASC 2016 - Williamsburg, United States
Duration: Sep 19 2016Sep 21 2016

Publication series

NameProceedings of the American Society for Composites - 31st Technical Conference, ASC 2016

Other

Other31st Annual Technical Conference of the American Society for Composites, ASC 2016
Country/TerritoryUnited States
CityWilliamsburg
Period9/19/169/21/16

ASJC Scopus subject areas

  • Ceramics and Composites

Fingerprint

Dive into the research topics of 'Tensile behavior of compression molded glass microballoon/HDPE syntactic foams'. Together they form a unique fingerprint.

Cite this