Abstract
The template-directed synthesis of a bistable tripodal [4]rotaxane, which has cyclobis(paraquat-p-phenylene) (CBPQT4+) as the π-electron-de-ficient rings, and tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene units as the pairs of π-electron-rich recognition sites located on all three legs of the tripodal dumbbell, is described. The chemical and electrochemical oxidation of the [4]rotaxane and its tripo dal dumbbell have allowed us to unravel an unprecedented TTF+ radical cation dimerization. In fact, two types of TTF dimers, namely, the radical cation dimer [TTF+]2 and the mixed-valence one [(TTF) 2]+, have been ob served at room temperature for the tripodal dumbbell, whereas, in the case of the [4]rotaxane, only the radical cation dimer [TTF+]2 is formed. This anomaly can be explained if it is accepted that most of the neutral TTF units in the [4]rotaxane are encircled by CBPQT4+ rings, which renders the formation of the mixed-valence dimer [(TTF)2]+ highly unfavorable.
Original language | English (US) |
---|---|
Pages (from-to) | 3889-3895 |
Number of pages | 7 |
Journal | Chemistry - A European Journal |
Volume | 14 |
Issue number | 13 |
DOIs | |
State | Published - Apr 28 2008 |
Keywords
- Bistability
- Click chemistry
- Dimerization
- Rotaxanes
- Template synthesis
ASJC Scopus subject areas
- Catalysis
- Organic Chemistry