Textless Speech-to-Speech Translation With Limited Parallel Data

Anuj Diwan, Anirudh Srinivasan, David Harwath, Eunsol Choi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Existing speech-to-speech translation (S2ST) models fall into two camps: they either leverage text as an intermediate step or require hundreds of hours of parallel speech data. Both approaches are incompatible with textless languages or language pairs with limited parallel data. We present PFB, a framework for training textless S2ST models that require just dozens of hours of parallel speech data. We first pretrain a model on large-scale monolingual speech data, finetune it with a small amount of parallel speech data (20 − 60 hours), and lastly train with an unsupervised backtranslation objective. We train and evaluate our models for English-to-German, German-to-English and Marathi-to-English translation on three different domains (European Parliament, Common Voice, and All India Radio) with single-speaker synthesized speech. Evaluated using the ASR-BLEU metric, our models achieve reasonable performance on all three domains, with some being within 1 − 2 points of our higher-resourced topline.

Original languageEnglish (US)
Title of host publicationEMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Findings of EMNLP 2024
EditorsYaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen
PublisherAssociation for Computational Linguistics (ACL)
Pages16208-16224
Number of pages17
ISBN (Electronic)9798891761681
DOIs
StatePublished - 2024
Event2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024 - Hybrid, Miami, United States
Duration: Nov 12 2024Nov 16 2024

Publication series

NameEMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Findings of EMNLP 2024

Conference

Conference2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024
Country/TerritoryUnited States
CityHybrid, Miami
Period11/12/2411/16/24

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'Textless Speech-to-Speech Translation With Limited Parallel Data'. Together they form a unique fingerprint.

Cite this