Abstract
The family of AZARYPHOS (aza-aryl-phosphane) phosphane ligands, containing a phosphine unit and sterically shielded nitrogen lone pairs in the ligand periphery, is introduced as a tool for developing ambifunctional catalysis by the metal center and nitrogen lone pairs in the ligand sphere. General synthetic strategies have been developed to synthesize over 25 examples of structurally diverse (6-aryl-2pyridyl)phosphanes (ARPYPHOS), (6alkyl-2-pyridyl)phosphanes (ALPY-PHOS), 4,6-disubsituted l,3-diazin-2ylphosphanes or l,3,5-triazin-2- ylphosphanes, quinazolinylphosphanes, quinolinylphosphanes, and others. The scalable syntheses proceed in a few steps. The incorporation of AZARYPHOS ligands (L) into complexes [RuCp(L)2(MeCN)][PF6] (Cp = cyclopentadieny1)gives catalysts for the anti-Markovnikov hydration of terminal alkynes of the highest known activities. Electronic and steric ligand effects modulate the reaction kinetics over a range of two orders of magnitude. These results highlight the importance of using structurally diverse ligand families in the process of developing cooperative ambifunctional catalysis by a metal and its ligand.
Original language | English (US) |
---|---|
Pages (from-to) | 7167-7179 |
Number of pages | 13 |
Journal | Chemistry - A European Journal |
Volume | 15 |
Issue number | 29 |
DOIs | |
State | Published - Jul 20 2009 |
Keywords
- Alkynes
- Catalysis
- Phosphane ligands
- Ruthenium
- Synthetic methods
ASJC Scopus subject areas
- General Chemistry
- Catalysis
- Organic Chemistry