TY - JOUR
T1 - The bidimensional theory of bounded-genus graphs
AU - Demaine, Erik D.
AU - Hajiaghayi, Mohammadtaghi
AU - Thilikos, Dimitrios M.
PY - 2006
Y1 - 2006
N2 - Bidimensionality provides a tool for developing subexponential fixed-parameter algorithms for combinatorial optimization problems on graph families that exclude a minor. This paper extends the theory of bidimensionality for graphs of bounded genus (which is a minor-excluding family). Specifically we show that, for any problem whose solution value does not increase under contractions and whose solution value is large on a grid graph augmented by a bounded number of handles, the treewidth of any bounded-genus graph is at most a constant factor larger than the square root of the problem's solution value on that graph. Such bidimensional problems include vertex cover, feedback vertex set, minimum maximal matching, dominating set, edge dominating set, r-dominating set, connected dominating set, planar set cover, and diameter. On the algorithmic side, by showing that an augmented grid is the prototype bounded-genus graph, we generalize and simplify many existing algorithms for such problems in graph classes excluding a minor. On the combinatorial side, our result is a step toward a theory of graph contractions analogous to the seminal theory of graph minors by Robertson and Seymour.
AB - Bidimensionality provides a tool for developing subexponential fixed-parameter algorithms for combinatorial optimization problems on graph families that exclude a minor. This paper extends the theory of bidimensionality for graphs of bounded genus (which is a minor-excluding family). Specifically we show that, for any problem whose solution value does not increase under contractions and whose solution value is large on a grid graph augmented by a bounded number of handles, the treewidth of any bounded-genus graph is at most a constant factor larger than the square root of the problem's solution value on that graph. Such bidimensional problems include vertex cover, feedback vertex set, minimum maximal matching, dominating set, edge dominating set, r-dominating set, connected dominating set, planar set cover, and diameter. On the algorithmic side, by showing that an augmented grid is the prototype bounded-genus graph, we generalize and simplify many existing algorithms for such problems in graph classes excluding a minor. On the combinatorial side, our result is a step toward a theory of graph contractions analogous to the seminal theory of graph minors by Robertson and Seymour.
KW - Graph contractions
KW - Graph minors
KW - Graphs on surfaces
KW - Grids
KW - Treewidth
UR - http://www.scopus.com/inward/record.url?scp=34249062041&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34249062041&partnerID=8YFLogxK
U2 - 10.1137/040616929
DO - 10.1137/040616929
M3 - Article
AN - SCOPUS:34249062041
SN - 0895-4801
VL - 20
SP - 357
EP - 371
JO - SIAM Journal on Discrete Mathematics
JF - SIAM Journal on Discrete Mathematics
IS - 2
ER -