The Boltzmann equation with a soft potential - I. Linear, spatially-homogeneous

Russel E. Caflisch

Research output: Contribution to journalArticlepeer-review


The initial value problem for the linearized spatially-homogeneous Boltzmann equation has the form ∂f/∂t+Lf=0 with f(ξ, t=0) given. The linear operator L operates only on the ξ variable and is non-negative, but, for the soft potentials considered here, its continuous spectrum extends to the origin. Thus one cannot expect exponential decay for f, but in this paper it is shown that f decays like etβ with β<1. This result will be used in Part II to show existence of solutions of the initial value problem for the full nonlinear, spatially dependent problem for initial data that is close to equilibrium.

Original languageEnglish (US)
Pages (from-to)71-95
Number of pages25
JournalCommunications In Mathematical Physics
Issue number1
StatePublished - Feb 1980

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Mathematical Physics


Dive into the research topics of 'The Boltzmann equation with a soft potential - I. Linear, spatially-homogeneous'. Together they form a unique fingerprint.

Cite this