The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological implications of the Fourier space wedges of the final sample

Jan Niklas Grieb, Ariel G. Sánchez, Salvador Salazar-Albornoz, Román Scoccimarro, Martín Crocce, Claudio Dalla Vecchia, Francesco Montesano, Héctor Gil-Marín, Ashley J. Ross, Florian Beutler, Sergio Rodríguez-Torres, Chia Hsun Chuang, Francisco Prada, Francisco Shu Kitaura, Antonio J. Cuesta, Daniel J. Eisenstein, Will J. Percival, Mariana Vargas-Magaña, Jeremy L. Tinker, Rita TojeiroJoel R. Brownstein, Claudia Maraston, Robert C. Nichol, Matthew D. Olmstead, Lado Samushia, Hee Jong Seo, Alina Streblyanska, Gong Bo Zhao

    Research output: Contribution to journalArticlepeer-review

    Abstract

    We extract cosmological information from the anisotropic power-spectrummeasurements from the recently completed Baryon Oscillation Spectroscopic Survey (BOSS), extending the concept of clustering wedges to Fourier space. Making use of new fast-Fourier-transform-based estimators, we measure the power-spectrum clustering wedges of the BOSS sample by filtering out the information of Legendre multipoles ℓ > 4. Our modelling of these measurements is based on novel approaches to describe non-linear evolution, bias and redshift-space distortions, which we test using synthetic catalogues based on large-volume N-body simulations. We are able to include smaller scales than in previous analyses, resulting in tighter cosmological constraints. Using three overlapping redshift bins, we measure the angular-diameter distance, the Hubble parameter and the cosmic growth rate, and explore the cosmological implications of our full-shape clustering measurements in combination with cosmic microwave background and Type Ia supernova data. Assuming a Λ cold dark matter (ΛCDM) cosmology, we constrain the matter density to ΩM = 0.311-0.010+0.009 and the Hubble parameter to H0 = 67.6-0.6+0.7 km s-1 Mpc-1, at a confidence level of 68 per cent. We also allow for nonstandard dark energy models and modifications of the growth rate, finding good agreement with the ΛCDM paradigm. For example, we constrain the equation-of-state parameter to w = -1.019-0.039+0.048. This paper is part of a set that analyses the final galaxy-clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS.

    Original languageEnglish (US)
    Pages (from-to)2085-2112
    Number of pages28
    JournalMonthly Notices of the Royal Astronomical Society
    Volume467
    Issue number2
    DOIs
    StatePublished - 2017

    Keywords

    • Cosmological parameters
    • Cosmology: observations
    • Dark energy
    • Large-scale structure of Universe

    ASJC Scopus subject areas

    • Astronomy and Astrophysics
    • Space and Planetary Science

    Fingerprint

    Dive into the research topics of 'The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological implications of the Fourier space wedges of the final sample'. Together they form a unique fingerprint.

    Cite this