David R. Law, Brian Cherinka, Renbin Yan, Brett H. Andrews, Matthew A. Bershady, Dmitry Bizyaev, Guillermo A. Blanc, Michael R. Blanton, Adam S. Bolton, Joel R. Brownstein, Kevin Bundy, Yanmei Chen, Niv Drory, Richard D'Souza, Hai Fu, Amy Jones, Guinevere Kauffmann, Nicholas MacDonald, Karen L. Masters, Jeffrey A. NewmanJohn K. Parejko, José R. Sánchez-Gallego, Sebastian F. Sánchez, David J. Schlegel, Daniel Thomas, David A. Wake, Anne Marie Weijmans, Kyle B. Westfall, Kai Zhang

    Research output: Contribution to journalArticlepeer-review


    Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) is an optical fiber-bundle integral-field unit (IFU) spectroscopic survey that is one of three core programs in the fourth-generation Sloan Digital Sky Survey (SDSS-IV). With a spectral coverage of 3622-10354 A and an average footprint of ∼500 arcsec2 per IFU the scientific data products derived from MaNGA will permit exploration of the internal structure of a statistically large sample of 10,000 low-redshift galaxies in unprecedented detail. Comprising 174 individually pluggable science and calibration IFUs with a near-constant data stream, MaNGA is expected to obtain ∼100 million raw-frame spectra and ∼10 million reduced galaxy spectra over the six-year lifetime of the survey. In this contribution, we describe the MaNGA Data Reduction Pipeline algorithms and centralized metadata framework that produce sky-subtracted spectrophotometrically calibrated spectra and rectified three-dimensional data cubes that combine individual dithered observations. For the 1390 galaxy data cubes released in Summer 2016 as part of SDSS-IV Data Release 13, we demonstrate that the MaNGA data have nearly Poisson-limited sky subtraction shortward of ∼8500 A and reach a typical 10σ limiting continuum surface brightness μ = 23.5 AB arcsec-2 in a five-arcsecond-diameter aperture in the g-band. The wavelength calibration of the MaNGA data is accurate to 5 km s-1 rms, with a median spatial resolution of 2.54 arcsec FWHM (1.8 kpc at the median redshift of 0.037) and a median spectral resolution of σ = 72 km s-1.

    Original languageEnglish (US)
    Article number83
    JournalAstronomical Journal
    Issue number4
    StatePublished - Oct 2016


    • methods: data analysis
    • surveys
    • techniques: imaging spectroscopy

    ASJC Scopus subject areas

    • Astronomy and Astrophysics
    • Space and Planetary Science


    Dive into the research topics of 'THE DATA REDUCTION PIPELINE for the SDSS-IV MaNGA IFU GALAXY SURVEY'. Together they form a unique fingerprint.

    Cite this