The effect of worked material hardness on stone tool wear

Alice Rodriguez, Kaushik Yanamandra, Lukasz Witek, Zhong Wang, Rakesh K. Behera, Radu Iovita

Research output: Contribution to journalArticlepeer-review

Abstract

The identification of ancient worked materials is one of the fundamental goals of lithic use wear analysis and one of the most important parts of understanding how stone tools were used in the past. Given the documented overlaps in wear patterns generated by different materials, it is imperative to understand how individual materials’ mechanical properties might influence wear formation. Because isolating physical parameters and measuring their change is necessary for such an endeavor, controlled (rather than replicative) experiments combined with objective measurements of surface topography are necessary to better grasp how surface modifications formed on stone tools. Therefore, we used a tribometer to wear natural flint surfaces against five materials (bone, antler, beech wood, spruce wood, and ivory) under the same force, and speed, over one, three, and five hours. The study aimed to test if there is a correlation between surface modifications and the hardness of the worked material. We measured each raw material’s hardness using a nano-indentation test, and we compared the surface texture of the flint bits using a 3D optical profilometer. The interfacial detritus powder was analyzed with a scanning electron microscope to look for abraded flint particles. We demonstrate that, contrary to expectation, softer materials, such as wood, create a smoother surface than hard ones, such as ivory.

Original languageEnglish (US)
Article numbere0276166
JournalPloS one
Volume17
Issue number10 October
DOIs
StatePublished - Oct 2022

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'The effect of worked material hardness on stone tool wear'. Together they form a unique fingerprint.

Cite this